Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (12): 1415-1425.DOI: 10.1007/s40195-015-0341-6
• Article • Next Articles
M. Beatriz Silva1, Kerim Isik2, A. Erman Tekkaya2, Paulo A. F. Martins1,2()
Received:
2015-11-27
Revised:
2015-11-27
Online:
2015-11-27
Published:
2015-12-15
M. Beatriz Silva, Kerim Isik, A. Erman Tekkaya, Paulo A. F. Martins. Fracture Loci in Sheet Metal Forming: A Review[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(12): 1415-1425.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Formability limits of sheet metal forming in the principal strain space: a Marciniaks vision [1]; b schematic representation of the forming limit curve (FLC) and of the fracture forming limit line (FFL)
Fig.2 Schematic representation of the fracture forming limit line (FFL) a and in-plane shear fracture forming limit line (SFFL) b in the principal strain space
Orientation | Modulus of elasticity (GPa) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation at break (%) | Anisotropy coefficient |
---|---|---|---|---|---|
0ºRD | 72.7 | 115.4 | 119.0 | 7.1 | 0.71 |
45ºRD | 67.9 | 120.4 | 121.2 | 5.2 | 0.88 |
90ºRD | 71.8 | 123.0 | 120.8 | 5.6 | 0.87 |
Average | 70.0 | 119.9 | 120.5 | 6.8 | 0.84 |
Table 1 Summary of the mechanical properties of the AA1050-H111 aluminium sheets
Orientation | Modulus of elasticity (GPa) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation at break (%) | Anisotropy coefficient |
---|---|---|---|---|---|
0ºRD | 72.7 | 115.4 | 119.0 | 7.1 | 0.71 |
45ºRD | 67.9 | 120.4 | 121.2 | 5.2 | 0.88 |
90ºRD | 71.8 | 123.0 | 120.8 | 5.6 | 0.87 |
Average | 70.0 | 119.9 | 120.5 | 6.8 | 0.84 |
Fig.3 Method and procedure used for determining fracture toughness $R$: a schematic representation of a double-notched test specimen loaded in tension; b schematic evolution of the tensile force with displacement for test specimens with different lengths $c$ of the ligaments; c determining fracture toughness $R$ from extrapolation of the total energy per unit of area $w$
Fig.4 Formability limits by necking and fracture: a schematic procedure to determine the in-plane strains at the onset of necking; b schematic procedure to determine the gauge length strains at the onset of fracture; c the FLC of the AA1050-H111 aluminium sheets with 1 mm thickness
| | | | | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$w$ | $c$ | $d$ | $w$ | $c$ | $d$ | $r$ | $r_{i}$ | $c$ | $d$ | $r$ | $r_{\text{tool}}$ | $\psi_{0}$ | $w$ | $r_{\text{tool}}$ | $\psi_{0}$ |
50 | 5C25 | 3 | 20 | 4 | 1 | 40 | 21 | 1.5C19 | 1 | 165 | 4C25 | 30 | 170 | 4 | 30 |
Table 2 Experimental test specimens utilized in the characterization of the formability limits by fracture
| | | | | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$w$ | $c$ | $d$ | $w$ | $c$ | $d$ | $r$ | $r_{i}$ | $c$ | $d$ | $r$ | $r_{\text{tool}}$ | $\psi_{0}$ | $w$ | $r_{\text{tool}}$ | $\psi_{0}$ |
50 | 5C25 | 3 | 20 | 4 | 1 | 40 | 21 | 1.5C19 | 1 | 165 | 4C25 | 30 | 170 | 4 | 30 |
Fig.5 Fracture toughness $R$ in AA1050-H111 aluminium sheets with 1 mm thickness obtained from double-edge-notched test specimens loaded in tension: a experimental evolution of the tensile force with displacement for test specimens with different ligaments $c$ that were cut out from the supplied sheets at 0º with respect to the rolling direction; b average value of fracture toughness $R$ obtained from test specimens with different ligaments $c$ that were cut out from the supplied sheets at 0º and 90º with respect to the rolling direction
Fig.6 Determining fracture toughness directly from SPIF tests: a circumferential crack with notation and detail showing the hatched region corresponding to a thin boundary layer alongside the crack; b truncated conical part fabricated by SPIF with a detail of a circumferential crack
Fig.7 Experimental strains obtained from measurements in truncated conical SPIF parts and double-notched test specimens loaded in tension. The grey solid markers refer to the strain pairs at the onset of necking, the black solid markers refer to the strain pairs at the onset of fracture, and the elliptical dashed grey curves refer to the iso-effective strain contours
Fig.8 Experimental fracture strain pairs obtained from the tests listed in Table 2 that were utilized to determine the fracture loci of the AA1050-H111 aluminium sheets with 1 mm thickness
[1] | Z. Marciniak, Adv. Technol. Plast. 1, 685(1984) |
[2] | J.B. Kim, D.Y. Yang, Eng. Comput. 20, 6(2003) |
[3] | S.P. Keeler, Circular Grid SystemA Valuable Aid for Evaluating Sheet Metal Formability. SAE technical paper 680092 (1968) |
[4] | G. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop. SAE technical paper 68009 (1968) |
[5] | H.W. Swift, J. Mech. Phys. Solids 1, 1 (1952) |
[6] | R. Hill, J. Mechan, Phys. Solids 1, 19 (1952) |
[7] | Z. Marciniak, K. Kuckzynski, Int. J. Mech. Sci. 9, 609(1967) |
[8] | A.G. Atkins, J. Mater. Process. Technol. 56, 609(1996) |
[9] | F.A. J. Appl. Mech. 35, 363(1968) |
[10] | C.M. Muscat-Fenech, S. Arndt, A.G. Atkins, in Proceedings of the 4th International Conference, University of Twente, The Nederlands, 1996, pp. 249C260 |
[11] | T. Wierzbicki, Y. Bao, Y.W. Lee, Y. Bai, Int. J. Mech. Sci. 47, 719(2005) |
[12] | K. Isik, M.B. Silva, A.E. Tekkaya, P.A.F. J. Mater. Process. Technol. 214, 1557(2014) |
[13] | A.G. Atkins, Y.W. Mai, Chichester, 1975) |
[14] | P.A.F. Int. J. Mech. Sci. 83, 112(2014) |
[15] | ASTM Standard E8/E8 M, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, USA, 2013) |
[16] | B. Cotterell, J.K. Reddel, Int. J. Fract. 13, 267(1977) |
[17] | C. Rossard, Paris, 1976) |
[18] | ISO Standard 12004-2, Metallic MaterialsSheet and StripDetermination of Forming-limit CurvesPart 2: Determination of FormingLimit Curves in the Laboratory, Geneva, Switzerland, 2008 |
[19] | V. Cristino, L. Montanari, M.B. Silva, A.G. Atkins, P.A.F. Int. J. Mech. Sci. 83, 146(2014) |
[20] | A.G. Atkins, P.A.F. UK, 2016) |
[21] | R. Hill, Proc. R. Soc. Lond. A 193, 281 (1948) |
[1] | Guang-Da Sun, Li Zhou, Ren-Xiao Zhang, Ling-Yun Luo, Hao Xu, Hong-Yun Zhao, Ning Guo, Di Zhang. Effect of Sleeve Plunge Depth on Interface/Mechanical Characteristics in Refill Friction Stir Spot Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 551-560. |
[2] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[3] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. |
[4] | Mao-Kai Chen, Jun Xie, De-Long Shu, Gui-Chen Hou, Shu-Ling Xun, Jin-Jiang Yu, Li-Rong Liu, Xiao-Feng Sun, Yi-Zhou Zhou. Effect of Long-Term Thermal Exposures on Tensile Behaviors of K416B Nickel-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1699-1708. |
[5] | Manoj Kumar Pathak, Amit Joshi, K. K. S. Mer, R. Jayaganthan. Mechanical Properties and Microstructural Evolution of Bulk UFG Al 2014 Alloy Processed Through Cryorolling and Warm Rolling [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 845-856. |
[6] | Peng Liu, Zhao-Kuang Chu, Yong Yuan, Dao-Hong Wang, Chuan-Yong Cui, Gui-Chen Hou, Yi-Zhou Zhou, Xiao-Feng Sun. Microstructures and Mechanical Properties of a Newly Developed Austenitic Heat Resistant Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 517-525. |
[7] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. |
[8] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[9] | Xu Kong, Yu-Min Wang, Xu Zhang, Qing Yang, Guo-Xing Zhang, Li-Na Yang, Rui Yang. Monitoring Damage Evolution in a Titanium Matrix Composite Shaft Under Torsion Loading Using Acoustic Emission [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1244-1252. |
[10] | A. A. Yuriev, V. E. Gromov, V. A. Grishunin, Yu. F. Ivanov, R. S. Qin, A. P. Semin. Stages and Fracture Mechanisms of Lamellar Pearlite of 100-m-Long Differentially Hardened Rails Under Long-Term Operation Conditions [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1356-1361. |
[11] | Dong-Wei Ao, Xing-Rong Chu, Shu-Xia Lin, Yang Yang, Jun Gao. Hot Tensile Behaviors and Microstructure Evolution of Ti-6Al-4V Titanium Alloy Under Electropulsing [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1287-1296. |
[12] | Jie Yang. Micromechanical Analysis of In-Plane Constraint Effect on Local Fracture Behavior of Cracks in the Weakest Locations of Dissimilar Metal Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 840-850. |
[13] | Li-Qing Wang, Yu-Ping Ren, Shi-Neng Sun, Hong Zhao, Song Li, Gao-Wu Qin. Microstructure, Mechanical Properties and Fracture Behavior of As-Extruded Zn-Mg Binary Alloys [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(10): 931-940. |
[14] | Gang Wang,Li-Hui Lang,Wen-Jun Yu,Xi-Na Huang,Fei Li. Influences of Hot-Isostatic-Pressing Temperature on the Microstructure, Tensile Properties and Tensile Fracture Mode of 2A12 Powder Compact [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(10): 963-974. |
[15] | Shuai Guan, Chuan-Yong Cui. A Newly Developed Wrought Ni-Fe-Cr-based Superalloy for Advanced Ultra-Supercritical Power Plant Applications Beyond 700 °C [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1083-1088. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||