Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (7): 799-808.DOI: 10.1007/s40195-015-0257-1
• Orginal Article • Next Articles
Xian-Bo Shi1,2, Wei Yan1, Wei Wang1, Lian-Yu Zhao3, Yi-Yin Shan1, Ke Yang1()
Received:
2014-10-11
Revised:
2014-12-16
Online:
2015-03-22
Published:
2015-07-23
Xian-Bo Shi, Wei Yan, Wei Wang, Lian-Yu Zhao, Yi-Yin Shan, Ke Yang. HIC and SSC Behavior of High-Strength Pipeline Steels[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(7): 799-808.
Add to citation manager EndNote|Ris|BibTeX
Steel | C | Si | Mn | S | P | Mo | Cu | Cr | Ni | Al | Nb + V+Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
X70 | 0.032 | 0.14 | 0.81 | 0.0017 | 0.0050 | 0.11 | 0.18 | 0.30 | 0.11 | 0.055 | 0.092 | Bal. |
X80 | 0.046 | 0.14 | 1.53 | 0.0014 | 0.0050 | 0.20 | 0.31 | 0.30 | 0.10 | 0.061 | 0.132 | Bal. |
X90 | 0.046 | 0.10 | 1.68 | 0.0013 | 0.0050 | 0.19 | 0.30 | 0.29 | 0.20 | 0.031 | 0.117 | Bal. |
X90-C | 0.050 | 0.19 | 1.77 | 0.0016 | 0.0076 | 0.24 | 0.0086 | 0.30 | 0.016 | 0.038 | 0.089 | Bal. |
X100 | 0.046 | 0.10 | 1.91 | 0.0013 | 0.0050 | 0.29 | 0.29 | 0.30 | 0.50 | 0.038 | 0.138 | Bal. |
Table 1 Chemical compositions of the pipeline steels (wt%)
Steel | C | Si | Mn | S | P | Mo | Cu | Cr | Ni | Al | Nb + V+Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
X70 | 0.032 | 0.14 | 0.81 | 0.0017 | 0.0050 | 0.11 | 0.18 | 0.30 | 0.11 | 0.055 | 0.092 | Bal. |
X80 | 0.046 | 0.14 | 1.53 | 0.0014 | 0.0050 | 0.20 | 0.31 | 0.30 | 0.10 | 0.061 | 0.132 | Bal. |
X90 | 0.046 | 0.10 | 1.68 | 0.0013 | 0.0050 | 0.19 | 0.30 | 0.29 | 0.20 | 0.031 | 0.117 | Bal. |
X90-C | 0.050 | 0.19 | 1.77 | 0.0016 | 0.0076 | 0.24 | 0.0086 | 0.30 | 0.016 | 0.038 | 0.089 | Bal. |
X100 | 0.046 | 0.10 | 1.91 | 0.0013 | 0.0050 | 0.29 | 0.29 | 0.30 | 0.50 | 0.038 | 0.138 | Bal. |
Steel | Temperature of different rolling steps denoted by interpass reduction | Cooling rate (°C/s) | Final cooling temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
80-60 mm (°C) | 60-45 mm (°C) | 45-30 mm (°C) | 30-24 mm (°C) | 24-16 mm (°C) | 16-11 mm (°C) | 11-8 mm (°C) | |||
X70 | 1090 | 1045 | 986 | 909 | 850 | 841 | 815 | 16 | 430 |
X80 | 1100 | 1056 | 1000 | 892 | 854 | 800 | 772 | 15 | 300 |
X90 | 1079 | 1046 | 987 | 890 | 835 | 800 | 750 | 20 | - |
X100 | 1092 | 1005 | 960 | 907 | 837 | 780 | 725 | 28 | - |
Table 2 Measured processing parameters of TMCP
Steel | Temperature of different rolling steps denoted by interpass reduction | Cooling rate (°C/s) | Final cooling temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|
80-60 mm (°C) | 60-45 mm (°C) | 45-30 mm (°C) | 30-24 mm (°C) | 24-16 mm (°C) | 16-11 mm (°C) | 11-8 mm (°C) | |||
X70 | 1090 | 1045 | 986 | 909 | 850 | 841 | 815 | 16 | 430 |
X80 | 1100 | 1056 | 1000 | 892 | 854 | 800 | 772 | 15 | 300 |
X90 | 1079 | 1046 | 987 | 890 | 835 | 800 | 750 | 20 | - |
X100 | 1092 | 1005 | 960 | 907 | 837 | 780 | 725 | 28 | - |
Steel | YS (MPa) | UTS (MPa) | Ratio of YS/UTS | Elongation (%) | Impact toughness (J) |
---|---|---|---|---|---|
X70 | 491 | 563 | 0.87 | 25.0 | 106a |
X80 | 620 | 720 | 0.86 | 23.5 | 116a |
X90 | 657 | 729 | 0.90 | 23.5 | 116a |
X90-C | 690 | 726 | 0.95 | 20 | 57b |
X100 | 698 | 922 | 0.76 | 21.5 | 104a |
Table 3 Mechanical properties of the experimental steels
Steel | YS (MPa) | UTS (MPa) | Ratio of YS/UTS | Elongation (%) | Impact toughness (J) |
---|---|---|---|---|---|
X70 | 491 | 563 | 0.87 | 25.0 | 106a |
X80 | 620 | 720 | 0.86 | 23.5 | 116a |
X90 | 657 | 729 | 0.90 | 23.5 | 116a |
X90-C | 690 | 726 | 0.95 | 20 | 57b |
X100 | 698 | 922 | 0.76 | 21.5 | 104a |
Fig. 4 Corrosion morphologies of the specimens and EDS analysis result: X70 a, X80 b, X90 c, X90-C d, X100 e steels subjected to standard test; X70 f, X80 g, X90 h, X90-C i, X100 j steels subjected to severe test; SEM image of the corrosion products on X90-C steel surface k; EDS result of the position as denoted in Fig. 4k l
Steel | Standard test | Severe test | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Examined face | R CS (%) | R CL (%) | R CT (%) | Examined face | R CS (%) | R CL (%) | R CT (%) | ||||||||||
X70 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |||||||||
2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | ||||||||||
3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | ||||||||||
Average | 0 | 0 | 0 | Average | 0 | 0 | 0 | ||||||||||
X80 | 1 | 0 | 0 | 0 | 1 | 0.03 | 11.4 | 0.3 | |||||||||
2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | ||||||||||
3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | ||||||||||
Average | 0 | 0 | 0 | Average | 0.01 | 3.8 | 0.1 | ||||||||||
X90 | 1 | 0.3 | 60.9 | 1.9 | 1 | 1.2 | 67.0 | 3.1 | |||||||||
2 | 0.1 | 35.8 | 0.7 | 2 | 1.1 | 39.1 | 3.4 | ||||||||||
3 | 0.2 | 22.3 | 0.7 | 3 | 0.1 | 13.1 | 0.9 | ||||||||||
Average | 0.2 | 39.7 | 1.1 | Average | 0.8 | 39.7 | 2.5 | ||||||||||
X90-C | 1 | 0.06 | 31.6 | 0.4 | 1 | 0.02 | 20.9 | 0.08 | |||||||||
2 | 0 | 0 | 0 | 2 | 0.2 | 65.0 | 0.3 | ||||||||||
3 | 0.2 | 66.5 | 0.8 | 3 | 0.02 | 22.4 | 0.08 | ||||||||||
Average | 0.03 | 32.7 | 0.4 | Average | 0.08 | 36.1 | 0.15 | ||||||||||
X100 | 1 | 0.7 | 90.3 | 3.8 | 1 | 0.6 | 104.1 | 2.8 | |||||||||
2 | 0.4 | 91.3 | 1.4 | 2 | 0.6 | 143.2 | 2.7 | ||||||||||
3 | 0.05 | 32.5 | 0.1 | 3 | 3.7 | 167.5 | 10.7 | ||||||||||
Average | 0.38 | 71.4 | 1.8 | Average | 1.6 | 138.3 | 5.4 |
Table 4 Hydrogen-induced cracking parameters of the steels
Steel | Standard test | Severe test | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Examined face | R CS (%) | R CL (%) | R CT (%) | Examined face | R CS (%) | R CL (%) | R CT (%) | ||||||||||
X70 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |||||||||
2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | ||||||||||
3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | ||||||||||
Average | 0 | 0 | 0 | Average | 0 | 0 | 0 | ||||||||||
X80 | 1 | 0 | 0 | 0 | 1 | 0.03 | 11.4 | 0.3 | |||||||||
2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | ||||||||||
3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | ||||||||||
Average | 0 | 0 | 0 | Average | 0.01 | 3.8 | 0.1 | ||||||||||
X90 | 1 | 0.3 | 60.9 | 1.9 | 1 | 1.2 | 67.0 | 3.1 | |||||||||
2 | 0.1 | 35.8 | 0.7 | 2 | 1.1 | 39.1 | 3.4 | ||||||||||
3 | 0.2 | 22.3 | 0.7 | 3 | 0.1 | 13.1 | 0.9 | ||||||||||
Average | 0.2 | 39.7 | 1.1 | Average | 0.8 | 39.7 | 2.5 | ||||||||||
X90-C | 1 | 0.06 | 31.6 | 0.4 | 1 | 0.02 | 20.9 | 0.08 | |||||||||
2 | 0 | 0 | 0 | 2 | 0.2 | 65.0 | 0.3 | ||||||||||
3 | 0.2 | 66.5 | 0.8 | 3 | 0.02 | 22.4 | 0.08 | ||||||||||
Average | 0.03 | 32.7 | 0.4 | Average | 0.08 | 36.1 | 0.15 | ||||||||||
X100 | 1 | 0.7 | 90.3 | 3.8 | 1 | 0.6 | 104.1 | 2.8 | |||||||||
2 | 0.4 | 91.3 | 1.4 | 2 | 0.6 | 143.2 | 2.7 | ||||||||||
3 | 0.05 | 32.5 | 0.1 | 3 | 3.7 | 167.5 | 10.7 | ||||||||||
Average | 0.38 | 71.4 | 1.8 | Average | 1.6 | 138.3 | 5.4 |
Fig. 5 HIC propagation path for the experimental steels: a X80 steel subjected to severe test, b X90 steel subjected to standard test, c X90-C steel subjected to standard test, d X100 steel subjected to severe test
Steel | YS (MPa) | UTS (MPa) | Loading stress (MPa) | Duration time (h) |
---|---|---|---|---|
X80 | 620 | 720 | 496 (80% YS) | >720 |
558 (90% YS) | >720 | |||
X90 | 657 | 729 | 526 (80% YS) | 479 |
591 (90% YS) | 203 | |||
X90-C | 690 | 726 | 552 (80% YS) | 335 |
621 (90% YS) | 164 |
Table 5 Results of SSC examination for X80, X90 and X90-C steels
Steel | YS (MPa) | UTS (MPa) | Loading stress (MPa) | Duration time (h) |
---|---|---|---|---|
X80 | 620 | 720 | 496 (80% YS) | >720 |
558 (90% YS) | >720 | |||
X90 | 657 | 729 | 526 (80% YS) | 479 |
591 (90% YS) | 203 | |||
X90-C | 690 | 726 | 552 (80% YS) | 335 |
621 (90% YS) | 164 |
Fig. 6 Fractographs of SSC fracture at 80% YS loading of X90-C steel: a macrograph, b magnified image of the denoted area in Fig. 6a, c magnified image of the denoted area in Fig. 6a
Fig. 8 TEM micrographs of X70 and X80 steels: a QF grain in X70 steel with high dislocation density, b acicular ferrite in X80 steel, c tangled dislocation in acicular ferrite
[1] | M.A. Al-Anezi, G.S. Frankel, A.K. Agrawal, Corrosion 55, 1101 (1999) |
[2] | K.T. Corbett, R.R. Bowen, C.W. Petersen,Int. J. Offshore Polar Eng. 14, 75(2004) |
[3] | C. Mendibide, T. Sourmail,Corros. Sci. 51, 2795(2009) |
[4] | M.C. Zhao, Y.Y. Shan, Y.H. Li, K. Yang,Acta Metall. Sin. 37, 1087(2001). (in Chinese) |
[5] | M.C. Zhao, Y.Y. Shan, F.R. Xiao, K. Yang, Y.H. Li,Mater. Lett. 57, 141(2002) |
[6] | S.U. Koh, H.G. Jung, K.B. Kang, G.T. Park, K.Y. Kim, Corrosion 64, 574 (2008) |
[7] | G.T. Park, S.U. Koh, H.G. Jung, K.Y. Kim,Corros. Sci. 50, 1856(2008) |
[8] | B. Beidokhti, A. Dolati, A.H. Koukabi, Mater. Sci. Eng. A 507, 167 (2009) |
[9] | S.S. Nayaka, R.D.K. Misra, J. Hartmann, F. Siciliano, J.M. Gray, Mater. Sci. Eng. A 494, 456 (2008) |
[10] | Z. Shen, Y.H. Li, Y.Y. Shan, K. Liu, K. Yang,Acta Metall. Sin. 44, 215(2008). (in Chinese) |
[11] | D. Hardie, E.A. Charles, A.H. Lopez,Corros. Sci. 48, 4378(2006) |
[12] | M.A. Arafina, J.A. Szpunar, Mater. Sci. Eng. A 528, 4927 (2011) |
[13] | F. Huang, J. Liu, Z.J. Deng, J.H. Cheng, Z.H. Lu, X.G. Li, Mater. Sci. Eng. A 527, 6997 (2010) |
[14] | S.W. Thompson, D.J. Colvin, G. Krauss, Metall. Trans. A 21, 1493 (1990) |
[15] | F.R. Xiao, B. Liao, D.L. Ren, Y.Y. Shan, K. Yang,Mater. Charact. 54, 305(2005) |
[16] | W. Wang, Y.Y. Shan, K. Yang,Acta Metall. Sin. 43, 578(2007). (in Chinese) |
[17] | W. Wang, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 502, 38 (2009) |
[18] | M.C. Zhao, K. Yang, Y.Y. Shan, Metall. Mater. Trans. A 34, 1089 (2003) |
[19] | I. Chattoraj, Sadhana 20, 199 (1995) |
[20] | A. Traidia, M. Alfano, G. Lubineau, S. Duval, A. Sherik, Int. J. Hydrog. Energy 37, 16214 (2012) |
[21] | M. Al-Mansour, A.M. Alfantazi, M. El-boujdaini, Mater. Des. 30, 4088(2009) |
[22] | D. Hejazi, A.J. Hap, N. Yazdipour, D.P. Dunne, A. Calka, F. Barbaro, E.V. Pereloma, Mater. Sci. Eng. A 551, 40 (2012) |
[23] | C.A. Zapffe, C.E. Sims,Trans. Am. Inst. Min. Metall. Pet. Eng. 145, 225(1941) |
[24] | M.C. Zhao, K. Yang,Scr. Mater. 52, 881(2005) |
[25] | J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, Y. Matsuda,Acta Metall. 32, 1779(1984) |
[26] | R.M. Ale, J.M.A. Rebello, J. Charlier, Mater. Charact. 37, 89(1996) |
[27] | W.K. Kim, S.U. Koh, B.Y. Yang, K.Y. Kim,Corros. Sci. 50, 3336(2008) |
[28] | R.W. Revie, V.S. Sastri, G.R. Hoey, R.R. Ramsingh, D.K. Mak, M.T. Shehata, Corrosion 49, 17 (1993) |
[29] | T. Hara, H. Asahi, H. Ogawa, Corrosion 60, 1113 (2004) |
[30] | Z.Y. Liu, C.W. Du, X. Zhang, F.M. Wang, X.G. Li, Acta Metall. Sin. 26, 489 (2013). (Engl. Lett.) |
[31] | J. Kittel, V. Smanio, M. Fregonese,Corros. Sci. 52, 1386(2010) |
[32] | G.T. Park, S.U. Koh, H.G. Jung, K.Y. Kim,Corros. Sci. 50, 1856(2008) |
[1] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[2] | Xiaosheng Zhou, Hao Chen, Chenxi Liu, Yongchang Liu. Residual Ferrite Control of 9Cr ODS Steels by Tailoring Reverse Austenite Transformation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 187-195. |
[3] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[4] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[5] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[6] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[7] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[8] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[9] | Yu-Wei Liu, Jian Zhang, Xiao Lu, Miao-Ran Liu, Zhen-Yao Wang. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1302-1310. |
[10] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[11] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[12] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[13] | Lu An, Yan-Tao Sun, Shan-Ping Lu, Zhen-Bo Wang. Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1252-1258. |
[14] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[15] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||