Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (4): 467-476.DOI: 10.1007/s40195-015-0221-0
• Orginal Article • Previous Articles Next Articles
K. Jurczyk1, A. Miklaszewski2, K. Niespodziana2, M. Kubicka3, M. U. Jurczyk4, M. Jurczyk2()
Received:
2014-08-01
Revised:
2014-11-05
Online:
2015-01-28
Published:
2015-07-23
K. Jurczyk, A. Miklaszewski, K. Niespodziana, M. Kubicka, M. U. Jurczyk, M. Jurczyk. Synthesis and Properties of Ag-doped Titanium-10 wt% 45S5 Bioglass Nanostructured Scaffolds[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 467-476.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 XRD spectra of Ti, 45S5 Bioglass (10 wt%) and silver (1.5 wt%) powders mechanically alloyed for different times: a Ti—0 h, b 45S5 Bioglass—0 h, c Ag—0 h, d 15 h of MA, e bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite after annealing at 1,150 °C for 2 h, f ammonium hydrogen carbonate (NH4HCO3)—the space-holder material, g Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite scaffold with porosity of 67% after sintering in a vacuum of 1.33 × 10-2 Pa in two steps: at 175 °C for 2 h and at 1,150 °C for 10 h
Fig. 3 Scanning electron micrographs of the Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite scaffolds with porosities of 48% (a), 67% (b), 72% (c); the surface roughness of the bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite is shown in (d)
Sample | a (10-1 nm) | c (10-1 nm) | V (10-3 nm3) | HV0.3 | i c (A cm-2) | E c versus SCE (V) |
---|---|---|---|---|---|---|
A | 2.948 | 4.784 | 36.00 | 180 | 2.27×10-6 | -0.36 |
B | 2.968 | 4.761 | 36.32 | 480 | 3.50×10-7 | -0.43 |
C | 2.970 | 4.759 | 36.35 | - | 7.15×10-6 | -0.44 |
Table 1 Structural parameters, microhardness, mean values of corrosion current densities and corrosion potentials of studied bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite (B) and Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite scaffold with 67% porosity (C) in comparison with microcrystalline titanium (A)
Sample | a (10-1 nm) | c (10-1 nm) | V (10-3 nm3) | HV0.3 | i c (A cm-2) | E c versus SCE (V) |
---|---|---|---|---|---|---|
A | 2.948 | 4.784 | 36.00 | 180 | 2.27×10-6 | -0.36 |
B | 2.968 | 4.761 | 36.32 | 480 | 3.50×10-7 | -0.43 |
C | 2.970 | 4.759 | 36.35 | - | 7.15×10-6 | -0.44 |
Fig. 4 Potentiodynamic polarization curves of: microcrystalline titanium a, Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite scaffold with 67% porosity b, bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite c in Ringer’s solution at 37 °C
Fig. 5 Optical profiler 3D topography (229.1 × 301.1 μm scan size) (a, c) and X-profiles (b, d) of polished bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite (a, b), the Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag scaffold with a 67% porosity (c, d)
Sample | R a (µm) | R t (µm) | R z (µm) | S sc (µm-1) | S dq (degrees) | S dr (%) |
---|---|---|---|---|---|---|
Aa,b | 0.21 | 6.35 | 4.43 | 2.71 | 37.12 | 23.86 |
Bb | 0.92 | 9.05 | 7.45 | 0.84 | 27.95 | 12.91 |
C | 73.01 | 433.03 | 421.57 | 11.07 | 80.42 | 11,223.21 |
Table 2 Roughness and topography surface parameters for the studied samples on different processing routes; parameters taken from surface area of 0.069 mm2
Sample | R a (µm) | R t (µm) | R z (µm) | S sc (µm-1) | S dq (degrees) | S dr (%) |
---|---|---|---|---|---|---|
Aa,b | 0.21 | 6.35 | 4.43 | 2.71 | 37.12 | 23.86 |
Bb | 0.92 | 9.05 | 7.45 | 0.84 | 27.95 | 12.91 |
C | 73.01 | 433.03 | 421.57 | 11.07 | 80.42 | 11,223.21 |
Fig. 7 Scanning electron micrographs of osteoblasts cultured on bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite (a, b) and Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag scaffolds with 67% porosity (c, d) after the first (a, c), the fifth day (b, d)
Fig. 8 a Statistical results of viable adherent bacteria on microcrystalline titanium A, bulk Ti-10 wt% 45S5 Bioglass nanocomposite B, and bulk Ti-10 wt% 45S5 Bioglass-1.5 wt% Ag nanocomposite C, (b) representative macroscopic photos of viable adherent bacteria on difference experimental material surfaces
[1] | A. Arys, C. Philippart, N. Dourov, Y. He, Q.T. Le, J.J. Pireaux, J. Biomed. Mater. Res. 43, 300(1998) |
[2] | M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia,Prog. Mater. Sci. 54, 397(2009) |
[3] | M. Niinomi,Sci. Technol. Adv. Mater. 4, 445(2003) |
[4] | K. Niespodziana, K. Jurczyk, J. Jakubowicz, M. Jurczyk,Mater. Chem. Phys. 123, 160(2010) |
[5] | W.P. Cao, L. Hench,Ceram. Int. 22, 493(1996) |
[6] | S.M. Best, A.E. Porter, E.S. Thian, J. Huang, J. Eur. Ceram. Soc. 28, 1319(2008) |
[7] | S.A. Papargyri, D. Tsipas, G. Stergioudis, J. Chlopek,Eng. Biomater. 46, 27(2005) |
[8] | K. Jurczyk, K. Niespodziana, M.U. Jurczyk, J. Jakubowicz, M. Jurczyk,Mater. Chem. Phys. 131, 540(2011) |
[9] | M.U. Jurczyk, K. Jurczyk, A. Miklaszewski, M. Jurczyk,Mater. Des. 32, 4882(2011) |
[10] | M. Tulinski, M. Jurczyk, J. Nanosci. Nanotechnol. 12, 1(2012) |
[11] | V.C. Costa, H.S. Costa, W.L. Vasconcelos, M.M. Pereira, R.L. Oréfice, H.S. Mansur,Mater. Res. 10, 21(2007) |
[12] | A. Arifin, A.B. Sulong, N. Muhamad, J. Syarif, M.I. Ramli,Mater. Des. 55, 165(2014) |
[13] | F. Tang, H. Fudouzi, T. Uchikoshi, Y. Sakka, J. Eur. Ceram. Soc. 24, 341(2004) |
[14] | J. Jakubowicz, K. Jurczyk, K. Niespodziana, M. Jurczyk,Electrochem. Commun. 11, 461(2009) |
[15] | H. Liu, T.J. Webster, Biomaterials 28, 354 (2007) |
[16] | H. Agheli, J. Malmström, P. Hanarp, D.S. Sutherland, Mater. Sci. Eng. C 26, 911 (2006) |
[17] | M. Rai, A. Yadav, A. Gade,Biotechnol. Adv. 27, 76(2009) |
[18] | H. Wen, Y. Lin, S. Jian, S. Tseng, M. Weng, Y. Liu, J. Phys. 61, 445(2007) |
[19] | C.S. Ciobanu, F. Massuyeau, L.V. Constantin, D. Predoi,Nanoscale Res. Lett. 6, 613(2011) |
[20] | S. Ringer, J. Physiol. 3, 380 (1882) |
[21] | M. Cehreli, S. Sahin, K. Akca, J. Dent. 32, 123(2004) |
[22] | T.B. Webster, J.U. Ejiofor, Biomaterials 25, 4731 (2004) |
[23] | R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, J. Sochova,Adv. Eng. Mater. 10, B15(2008) |
[24] | Y.T. Sul, B.S. Kang, C. Johansson, H.S. Um, C.J. Park, T. Albrektsson, J. Biomed. Mater. Res. A 89, 942 (2009) |
[25] | M.U. Jurczyk, K. Jurczyk, K. Niespodziana, A. Miklaszewski, M. Jurczyk,Mater. Charact. 77, 99(2013) |
[26] | R. Burgers, S. Hahnel, T.E. Reichert, M. Rosentritt, M. Behr, T. Gerlach, G. Handel, M. Gosau,Acta Biomater. 6, 2307(2010) |
[27] | T.J. Webster, L.S. Schadler, R.W. Siegel, R. Bizios,Tissue Eng. 7, 291(2001) |
[28] | Y. Shen, G. Wang, X. Huang, Q. Zhang, J. Wu, C. Tang, Q. Yu, X. Liu, J. R. Soc. Interface 9, 313 (2012) |
[29] | K. Anselme, M. Bigerelle, Biomaterials 8, 1187 (2006) |
[30] | C.J. Kirkpatrick, C. Mittermayer, J. Mater. Sci. Mater. Med. 1, 9(1990) |
[31] | Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok, J. Biomed. Mater. Res. A 90, 1239 (2009) |
[32] | R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Höppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage, T.G. Langdon,Adv. Eng. Mater. 9, 527(2009) |
[33] | R. Kumar, H. Münstedt, Biomaterials 26, 2081 (2005) |
[34] | M. Kaczmarek, M.U. Jurczyk, B. Rubis, A. Banaszak, A. Kolecka, A. Paszel, K. Jurczyk, M. Murias, J. Sikora, M. Jurczyk, J. Biomed. Mater. Res. A 102, 1316 (2014) |
[1] | Xiaohui Shi, Zuhan Cao, Zhiyuan Fan, Junwei Qiao. Texture Evolution Behavior and Its Triggered Mechanical Anisotropy of CP Ti During Severe Cold Rolling and Subsequent Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1271-1282. |
[2] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[3] | Jing-Jing Dong, Lin Fan, Hai-Bing Zhang, Li-Kun Xu, Li-Li Xue. Electrochemical Performance of Passive Film Formed on Ti-Al-Nb-Zr Alloy in Simulated Deep Sea Environments [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 595-604. |
[4] | Li Jun-Lei, Wang Shuai, Cao Fang, Lin Xiao, Wei Xiao-Wei, Zhao Zhen-Hua, Dou Xiao-Jie, Yu Wei-Ting, Yang Ke, Zhao De-Wei. Fabrication and Characterization of Nanopillar-Like HA Coating on Porous Ti6Al4V Scaffold by a Combination of Alkali-Acid-Heat and Hydrothermal Treatments [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1075-1088. |
[5] | Xiao Lin, Adrian Chan, Xiao-Xiao Tan, Hui-Lin Yang, Lei Yang. Fabrication and Characterizations of Metallic Mg Containing PMMA-Based Partially Degradable Composite Bone Cements [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 808-816. |
[6] | I. Ansarian, M. H. Shaeri, M. Ebrahimi, P. Minárik. Tribological Characterization of Commercial Pure Titanium Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 857-868. |
[7] | Wei Diao, Li-Hua Ye, Zong-Wei Ji, Rui Yang, Qing-Miao Hu. Site Occupation of Nb in γ-TiAl: Beyond the Point Defect Gas Approximation [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1511-1520. |
[8] | Farahnaz Haftlang, Ali Habibolahzadeh. Influence of Treatment Sequence on Tribological Performance of Duplex Surface-Treated AISI 1045 Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1227-1236. |
[9] | Jing Luo, Xin Ding, Wen Song, Jian-Ying Bai, Jing Liu, Zhe Li, Fan-Hui Meng, Fang-Hao Chen, Yu-Mei Zhang. Inducing Macrophages M2 Polarization by Dexamethasone Laden Mesoporous Silica Nanoparticles from Titanium Implant Surface for Enhanced Osteogenesis [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1253-1260. |
[10] | Tian-Rui Li, Guo-Huai Liu, Mang Xu, Tian-Liang Fu, Yong Tian, Ra-Ja Devesh Kumar Misra, Zhao-Dong Wang. Hot Deformation Behavior and Microstructural Characteristics of Ti-46Al-8Nb Alloy [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 933-944. |
[11] | Li Xiang, Xiao-Hua Min, Xin Ji, Satoshi Emura, Cong-Qian Cheng, Koichi Tsuchiya. Effect of Pre-cold Rolling-Induced Twins and Subsequent Precipitated ω-Phase on Mechanical Properties in a β-Type Ti-Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(6): 604-614. |
[12] | Can Huang, Jian Tu, Yu-Ren Wen, Zhi Hu, Zhi-Ming Zhou, An-Ping Dong, Guo-Liang Zhu. Microstructural Characterization of Pure Titanium Treated by Laser Surface Treatment Under Different Processing Parameters [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 321-328. |
[13] | Xiao-Pei Li, Song-Zhu Kure-Chu, Toru Ogasawara, Hitoshi Yashiro, Hai-Bo Wang, Zi-Zhen Xu, Xiao-Hui Li, Guo-Lin Song, Guo-Yi Tang. Fabrication of a Gradient Nano-/Micro-structured Surface Layer on an Al-Si Casting Alloy by Means of Ultrasonic-Electropulsing Coupling Rolling Process [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1258-1264. |
[14] | Yong-Da Ye, Xiao-Pei Li, Zhi-Yan Sun, Hai-Bo Wang, Guo-Yi Tang. Enhanced Surface Mechanical Properties and Microstructure Evolution of Commercial Pure Titanium Under Electropulsing-Assisted Ultrasonic Surface Rolling Process [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1272-1280. |
[15] | Tong Zhou, Zhen-Bo Qin, Qin Luo, Qi Zhang, Bin Shen, Wen-Bin Hu, Lei Liu. Synthetic Effects of Frequency and Duty Ratio on Growth Characteristics, Energy Consumption and Corrosion Properties of Microarc Oxidized Coating Formed on Ti6Al4V [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(10): 1109-1120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||