Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (4): 635-641.DOI: 10.1007/s40195-014-0060-4
• research-article • Previous Articles Next Articles
Mahnaz Ghiasi, Azim Malekzadeh()
Received:
2013-05-07
Revised:
2013-11-20
Online:
2014-08-25
Published:
2014-10-16
Mahnaz Ghiasi, Azim Malekzadeh. Structural Features of (Ce, La or Sr)(Mn or Co)O3 Nano-Perovskites as a Catalyst for Carbon Monoxide Oxidation[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 635-641.
Add to citation manager EndNote|Ris|BibTeX
Sample | Composition | Temperature of calcination (°C) | Concentration of Mn(NO3)2·4H2O (mol/L) | Concentration of Co(NO3)2·6H2O (mol/L) | Concentration of Sr(NO3)2 (mol/L) | Concentration of La(NO3)3·6H2O (mol/L) | Concentration of Ce(NO3)3·6H2O (mol/L) |
---|---|---|---|---|---|---|---|
No. 1 | LaCoO3 | 600 | – | 0.20 | – | 0.20 | – |
No. 2 | LaCoO3 | 900 | – | 0.20 | – | 0.20 | – |
No. 3 | LaMnO3 | 600 | 0.20 | – | – | 0.20 | – |
No. 4 | LaMnO3 | 900 | 0.20 | – | – | 0.20 | – |
No. 5 | SrCoO3 | 900 | – | 0.25 | 0.25 | – | – |
No. 6 | SrMnO3 | 900 | 0.25 | – | 0.25 | – | – |
No. 7 | CeCoO3 | 900 | – | 0.25 | – | – | 0.25 |
No. 8 | CeMnO3 | 900 | 0.20 | – | – | – | 0.20 |
No. 9 | CeMnO3 | 1100 | 0.20 | – | – | – | 0.20 |
No. 10a | CeMnO3 | 1100 | 0.20 | – | – | – | 0.20 |
Table 1 Experimental conditions for preparation of the samples, concentration of citric acid is 1 mol/L
Sample | Composition | Temperature of calcination (°C) | Concentration of Mn(NO3)2·4H2O (mol/L) | Concentration of Co(NO3)2·6H2O (mol/L) | Concentration of Sr(NO3)2 (mol/L) | Concentration of La(NO3)3·6H2O (mol/L) | Concentration of Ce(NO3)3·6H2O (mol/L) |
---|---|---|---|---|---|---|---|
No. 1 | LaCoO3 | 600 | – | 0.20 | – | 0.20 | – |
No. 2 | LaCoO3 | 900 | – | 0.20 | – | 0.20 | – |
No. 3 | LaMnO3 | 600 | 0.20 | – | – | 0.20 | – |
No. 4 | LaMnO3 | 900 | 0.20 | – | – | 0.20 | – |
No. 5 | SrCoO3 | 900 | – | 0.25 | 0.25 | – | – |
No. 6 | SrMnO3 | 900 | 0.25 | – | 0.25 | – | – |
No. 7 | CeCoO3 | 900 | – | 0.25 | – | – | 0.25 |
No. 8 | CeMnO3 | 900 | 0.20 | – | – | – | 0.20 |
No. 9 | CeMnO3 | 1100 | 0.20 | – | – | – | 0.20 |
No. 10a | CeMnO3 | 1100 | 0.20 | – | – | – | 0.20 |
Fig. 1 XRD patterns of the synthesized samples Nos. 1–6 a, magnified graph of a in the 2θ range of 31°–35° b and XRD patterns of the synthesized samples Nos. 7–10 c, unmarked peaks in a, c are related to the perovskite and CeO2 phases, respectively
Sample | Composition | Crystal system | Space group | a (nm) | c (nm) | α (°) |
---|---|---|---|---|---|---|
Nos. 1 and 2 | LaCoO3 | Rhombohedral | R-3 | 0.54 | 0.54 | 60 |
Nos. 3 and 4 | LaMnO3 | Cubic | Pm-3m | 0.39 | 0.39 | 90 |
No. 5 | SrCoO3 | Hexagonal | – | 0.55 | 0.42 | 90 |
No. 6 | SrMnO3 | Hexagonal | P63/mmc | 0.55 | 0.91 | 90 |
Nos. 7–10 | CeO2 | Cubic | Fm-3m | 0.54 | 0.54 | 90 |
Table 2 Crystallographic parameters of the prepared nanoparticles
Sample | Composition | Crystal system | Space group | a (nm) | c (nm) | α (°) |
---|---|---|---|---|---|---|
Nos. 1 and 2 | LaCoO3 | Rhombohedral | R-3 | 0.54 | 0.54 | 60 |
Nos. 3 and 4 | LaMnO3 | Cubic | Pm-3m | 0.39 | 0.39 | 90 |
No. 5 | SrCoO3 | Hexagonal | – | 0.55 | 0.42 | 90 |
No. 6 | SrMnO3 | Hexagonal | P63/mmc | 0.55 | 0.91 | 90 |
Nos. 7–10 | CeO2 | Cubic | Fm-3m | 0.54 | 0.54 | 90 |
Sample | Composition | Crystallite size (nm) | BET (m2/g) | Total pore volume (mL/g) | Average pore diameter (nm) | |
---|---|---|---|---|---|---|
S | W–H | |||||
No. 1 | LaCoO3 | 39 | 50 | – | – | – |
No. 2 | LaCoO3 | 44 | 52 | 6 | 0.02 | 14.16 |
No. 3 | LaMnO3 | 22 | 30 | – | – | – |
No. 4 | LaMnO3 | 26 | 38 | 7 | 0.02 | 14.02 |
No. 5 | SrCoO3 | 36 | 51 | 5 | 0.01 | 7.45 |
No. 6 | SrMnO3 | 43 | 56 | 5 | 0.01 | 9.38 |
No. 7 | CeO2 | 46 | 59 | – | – | – |
No. 8 | CeO2 | 46 | 58 | – | – | – |
Nos. 9 and 10 | CeO2 | 51 | 63 | – | – | – |
Table 3 Crystallite size, BET, pore volume and pore diameter of the synthesized samples
Sample | Composition | Crystallite size (nm) | BET (m2/g) | Total pore volume (mL/g) | Average pore diameter (nm) | |
---|---|---|---|---|---|---|
S | W–H | |||||
No. 1 | LaCoO3 | 39 | 50 | – | – | – |
No. 2 | LaCoO3 | 44 | 52 | 6 | 0.02 | 14.16 |
No. 3 | LaMnO3 | 22 | 30 | – | – | – |
No. 4 | LaMnO3 | 26 | 38 | 7 | 0.02 | 14.02 |
No. 5 | SrCoO3 | 36 | 51 | 5 | 0.01 | 7.45 |
No. 6 | SrMnO3 | 43 | 56 | 5 | 0.01 | 9.38 |
No. 7 | CeO2 | 46 | 59 | – | – | – |
No. 8 | CeO2 | 46 | 58 | – | – | – |
Nos. 9 and 10 | CeO2 | 51 | 63 | – | – | – |
Sample | A cation | rA (nm) | B cation | rB (nm) | t-value | Octahedral factor |
---|---|---|---|---|---|---|
No. 1 and 2 | La3+ | 0.103 | Co3+ | 0.055 | 0.88 | 0.39 |
No. 3 and 4 | La3+ | 0.103 | Mn3+ | 0.065 | 0.84 | 0.46 |
No. 5 | Sr2+ | 0.118 | Co4+ | 0.053 | 0.95 | 0.38 |
No. 6 | Sr2+ | 0.118 | Mn4+ | 0.053 | 0.95 | 0.38 |
No. 7 | Ce3+ | 0.101 | Co3+ | 0.055 | 0.87 | 0.39 |
No. 8 | Ce3+ | 0.101 | Mn3+ | 0.065 | 0.83 | 0.46 |
Table 4 Ionic radius, tolerance factor, and octahedral factor of the samples
Sample | A cation | rA (nm) | B cation | rB (nm) | t-value | Octahedral factor |
---|---|---|---|---|---|---|
No. 1 and 2 | La3+ | 0.103 | Co3+ | 0.055 | 0.88 | 0.39 |
No. 3 and 4 | La3+ | 0.103 | Mn3+ | 0.065 | 0.84 | 0.46 |
No. 5 | Sr2+ | 0.118 | Co4+ | 0.053 | 0.95 | 0.38 |
No. 6 | Sr2+ | 0.118 | Mn4+ | 0.053 | 0.95 | 0.38 |
No. 7 | Ce3+ | 0.101 | Co3+ | 0.055 | 0.87 | 0.39 |
No. 8 | Ce3+ | 0.101 | Mn3+ | 0.065 | 0.83 | 0.46 |
Fig. 4 TEM micrographs a, d, size distribution histograms obtained from TEM analysis b, e and particle size distribution histograms obtained from particle size analyzer c, f for the samples: No. 1 a–c, No. 3 d–f
Sample | 10% | 50% | 90% |
---|---|---|---|
No. 1 | 116 | 183 | 199 |
No. 2 | 192 | 215 | 232 |
No. 3 | 145 | 154 | 162 |
No. 4 | 145 | 212 | 228 |
No. 5 | 265 | 295 | 338 |
No. 6 | 215 | 285 | 333 |
Table 5 CO oxidation temperature (°C) according to the CO conversion fraction for the prepared samples
Sample | 10% | 50% | 90% |
---|---|---|---|
No. 1 | 116 | 183 | 199 |
No. 2 | 192 | 215 | 232 |
No. 3 | 145 | 154 | 162 |
No. 4 | 145 | 212 | 228 |
No. 5 | 265 | 295 | 338 |
No. 6 | 215 | 285 | 333 |
[1] | E. Frozandeh-Mehr, A. Malekzadeh, M. Ghiasi, A. Gholizadeh, Y. Mortazavi, A. Khodadadi, Catal. Commun. 28, 32(2012)10.1016/j.catcom.2012.08.009 |
[2] | S. Sartipi, A.A. Khodadadi, Y. Mortazavi, Appl. Catal. B Environ. 83, 214(2008)10.1016/j.apcatb.2008.02.014 |
[3] | A. Civera, M. Pavese, G. Saracco, V. Specchia, Catal. Today 83, 199(2003)10.1016/S0920-5861(03)00220-7 |
[4] | P. Femina, P. Sanjay, Res. J. Recent Sci. 1, 178(2012) |
[5] | M. Ghiasi, A. Malekzadeh, Cryst. Res. Technol. 47, 471(2012)10.1002/crat.201100240 |
[6] | R.G. Shetkar, A.V. Salker, J. Mater. Sci. Technol. 26, 1098(2010)10.1016/S1005-0302(11)60007-8 |
[7] | R. Zhang, H. Alamdari, S. Kaliaguine, J. Catal. 242, 241(2006)10.1016/j.jcat.2006.05.033 |
[8] | K.C. Patil, S.T. Aruna, T. Mimani, Curr. Opin. Solid State Mater. Sci. 6, 507(2002)10.1016/S1359-0286(02)00123-7 |
[9] | A. Chakroborty, A.D. Sharma, B. Maiti, H.S. Maiti, Mater. Lett. 57, 862(2002)10.1016/S0167-577X(02)00886-8 |
[10] | M. Khazaei, A. Malekzadeh, F. Amini, Y. Mortazavi, A. Khodadadi, Cryst. Res. Technol. 45, 1064(2010)10.1002/crat.201000258 |
[11] | K. Umemoto, Y. Seto, Y. Masuda, Thermochim. Acta 431, 117(2005)10.1016/j.tca.2005.01.054 |
[12] | Z. Yang, L. Ye, X. Xie, Phys. Rev. B 59, 7051(1999)10.1103/PhysRevB.59.7051 |
[13] | L.M. Feng, L.Q. Jiang, M. Zhu, H.B. Liu, X. Zhou, C.H. Li, J. Phys. Chem. Solids 69, 967(2008)10.1016/j.jpcs.2007.11.007 |
[14] | P. Kameli, H. Salamati, A. Aezami, J. Appl. Phys. 100, 53914(2006)10.1063/1.2345036 |
[15] | I. Atribak, A. Bueno-Lopez, A. Garcia-Garcia, Catal. Commun. 9, 250(2008)10.1016/j.catcom.2007.05.047 |
[16] | D.H. Lee, J.S. Park, C.H. Yo, K.H. Kim, Mater. Chem. Phys. 40, 184(1995)10.1016/0254-0584(94)01468-V |
[17] | W. Wunderlich, H. Fujiwara, J. Electron. Mater. 40, 127(2011)10.1007/s11664-010-1420-0 |
[18] | K. Umemoto, Y. Seto, Y. Masuda, Thermochim. Acta 431, 117(2005)10.1016/j.tca.2005.01.054 |
[19] | Y. Shao, X.F. Wang, M. Ao, C.R. Gong, G.L. Fan, H.F. Chen, Front. Mater. Sci. 6, 304(2012)10.1007/s11706-012-0179-z |
[20] | L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, C.H. Li, J. Phys. Chem. Solids 67, 1531(2006)10.1016/j.jpcs.2006.02.004 |
[21] | L. Pautrot, P. Barboux, J.P. Biolot, J. Sol–Gel. Sci. Technol. 39, 261(2006)10.1007/s10971-006-7803-2 |
[1] | Bing-Yu Qian, Wei Miao, Min Qiu, Fan Gao, Dong-Hui Hu, Jian-Feng Sun, Rui-Zhi Wu, Boris Krit, Sergey Betsofen. Influence of Voltage on the Corrosion and Wear Resistance of Micro-Arc Oxidation Coating on Mg-8Li-2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 194-204. |
[2] | He Liu, Shuai Li, Cheng-Yang Jiang, Chun-Tang Yu, Ze-Bin Bao, Sheng-Long Zhu, Fu-Hui Wang. Oxidation Performance and Interdiffusion Behavior of a Pt-Modified Aluminide Coating with Pre-deposition of Ni [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1490-1500. |
[3] | Ming-Chun Zhao, Ying-Chao Zhao, Deng-Feng Yin, Shuo Wang, Yong-Ming Shangguan, Chao Liu, Li-Li Tan, Ci-Jun Shuai, Ke Yang, Andrej Atrens. Biodegradation Behavior of Coated As-Extruded Mg–Sr Alloy in Simulated Body Fluid [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1195-1206. |
[4] | Qi-Chuan Jiang, Xu-Min Zhao, Feng Qiu, Tian-Ning Ma, Qing-Long Zhao. The Relationship Between Oxidation and Thermal Fatigue of Martensitic Hot-Work Die Steels [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 692-698. |
[5] | Yue-Ling Guo, Li-Na Jia, Hua-Rui Zhang, Bin Kong, Yong-Lin Huang, Hu Zhang. Microstructure and High-Temperature Oxidation Behavior of Dy-Doped Nb-Si-Based Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 742-752. |
[6] | Lulu Wang, Mohammad Al-Mamun, Porun Liu, Yu Lin Zhong, Yun Wang, Hua Gui Yang, Huijun Zhao. Enhanced Thermochemical H2 Production on Ca-Doped Lanthanum Manganite Perovskites Through Optimizing the Dopant Level and Re-oxidation Temperature [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 431-439. |
[7] | Tong Zhou, Zhen-Bo Qin, Qin Luo, Qi Zhang, Bin Shen, Wen-Bin Hu, Lei Liu. Synthetic Effects of Frequency and Duty Ratio on Growth Characteristics, Energy Consumption and Corrosion Properties of Microarc Oxidized Coating Formed on Ti6Al4V [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(10): 1109-1120. |
[8] | Ye-Bing Hu, Li Zhang, Cong-Qian Cheng, Peng-Tao Zhao, Guang-Ping Guo, Jie Zhao. Oxidation Behavior of the Nickel-Based Superalloy DZ125 at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 857-862. |
[9] | Valeria Bongiorno, Paolo Piccardo, Simone Anelli, Roberto Spotorno. Influence of Surface Finishing on High-Temperature Oxidation of AISI Type 444 Ferritic Stainless Steel Used in SOFC Stacks [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 697-711. |
[10] | Wei-Min Gui, Hong-Yu Zhang, Min Yang, Tao Jin, Xiao-Feng Sun, Qi Zheng. The Intrinsic Relationship Between Microstructure Evolution and Thermal Fatigue Behavior of a Single-Crystal Cobalt-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1192-1200. |
[11] | Jian-Li Wang, Wei Yang, Da-Peng Xu, Xiao-Fei Yao. Effect of K2TiO(C2O4)2 Addition in Electrolyte on the Microstructure and Tribological Behavior of Micro-Arc Oxidation Coatings on Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1109-1118. |
[12] | Wen-Wen Zeng, Si-Han Hou, Xiao-Jun Ding, De-Li Duan, Shu Li, Shi-Hong Zhang. Synthesis and Compression Property of Oxidation-Resistant Ni-Al Foams [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(10): 965-972. |
[13] | Anees A. Ansari, Joselito P. Labis, Manawwer Alam, Shahid M. Ramay, Naushad Ahmad, Asif Mahmood. Synthesis, Structural and Optical Properties of Mn-Doped Ceria Nanoparticles: A Promising Catalytic Material [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(3): 265-273. |
[14] | Arash Fattah-Alhosseini, Mojtaba Vakili-Azghandi, Mohsen K. Keshavarz. Influence of Concentrations of KOH and Na2SiO3 Electrolytes on the Electrochemical Behavior of Ceramic Coatings on 6061 Al Alloy Processed by Plasma Electrolytic Oxidation [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(3): 274-281. |
[15] | Hong-Liang Ming, Si-Yan Wang, Zhi-Ming Zhang, Jian-Qiu Wang†, En-Hou Han, Wei Ke. Oxidation and Electrochemical Behavior of Monolayer-Graphene-Coated Copper in Simulated Primary Water [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 89-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||