Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (2): 313-323.DOI: 10.1007/s40195-014-0047-1
• research-article • Previous Articles Next Articles
Enxiang Pu1,2, Wenjie Zheng2(), Jinzhong Xiang1, Zhigang Song2, Han Feng2, Yuliang Zhu2
Received:
2013-08-30
Revised:
2013-10-20
Online:
2014-04-25
Published:
2014-05-07
Enxiang Pu, Wenjie Zheng, Jinzhong Xiang, Zhigang Song, Han Feng, Yuliang Zhu. Hot Working Characteristic of Superaustenitic Stainless Steel 254SMO[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 313-323.
Add to citation manager EndNote|Ris|BibTeX
Fig. 5 Power dissipation maps for 254SMO at true strains of 0.2 a, 0.4 b, 0.6 c, 0.8 d, 1.0 (e), 1.1 f (The contour number represents the percentage efficiency of power dissipation)
Fig. 6 Optical micrographs of 254SMO deformed to a true strain of 1.2 at the strain rate of 0.01 s-1 and the temperatures of 1,000 °C a and 1,050 °C b
Fig. 7 a SEM micrograph of 254SMO deformed to a true strain of 1.2 at the strain rate of 0.01 s-1 and temperature of 1,050 °C, b EDS analysis of chemical composition of precipitates in Fig. 7a
Fig. 8 a TEM micrograph of precipitates in the specimen deformed to a true strain of 1.2 at the strain rate of 0.01 s-1 and temperature of 1,050 °C, b selected area diffraction pattern of precipitate in Fig. 8a
Fig. 10 Optical micrographs of 254SMO deformed to a true strain of 1.2 at 1,150 °C and 0.1 s-1a, 1,150 °C and 1 s-1b, 1,200 °C and 0.1 s-1c, 1,200 °C 1 s-1d
Treatment | Grain size (μm) | Grade |
---|---|---|
Soaking at 1,200 °C for 180 s | 36.73 | 6.24 |
Compression at 1,150 °C and 0.01 s-1 | 18.24 | 8.26 |
Compression at 1,150 °C and 0.1 s-1 | 14.07 | 9.01 |
Compression at 1,150 °C and 1 s-1 | 8.78 | 10.37 |
Compression at 1,200 °C and 0.1 s-1 | 22.24 | 7.69 |
Compression at 1,200 °C and 1 s-1 | 14.16 | 8.99 |
Table 1 Results of grain size measurement of the 254SMO was treated with different treatments
Treatment | Grain size (μm) | Grade |
---|---|---|
Soaking at 1,200 °C for 180 s | 36.73 | 6.24 |
Compression at 1,150 °C and 0.01 s-1 | 18.24 | 8.26 |
Compression at 1,150 °C and 0.1 s-1 | 14.07 | 9.01 |
Compression at 1,150 °C and 1 s-1 | 8.78 | 10.37 |
Compression at 1,200 °C and 0.1 s-1 | 22.24 | 7.69 |
Compression at 1,200 °C and 1 s-1 | 14.16 | 8.99 |
Fig. 12 Optical micrographs of 254SMO deformed to a true strain of 1.2 at 950 °C and 1 s-1a, 950 °C and 10 s-1b, 1,000 °C and 10 s-1c, and 1,050 °C 10 s-1d (The compression direction is vertical)
[1] | T. Koutsoukis, S. Zormalia, P. Kokkonidis, Adv. Mater. Res. 89–91, 301(2011) |
[2] | C.C. Wu, S.H. Wang, C.Y. Chen, Scr. Mater. 56, 717(2007)10.1016/j.scriptamat.2006.08.064 |
[3] | E.A. Abd El Meguid, A.A. Abd El Latif, Corros. Sci. 46, 2431(2004)10.1016/j.corsci.2004.01.022 |
[4] | Y.V.R.K. Prasad, T. Seshacharyulu, Mater. Sci. Eng. A 243, 82(1998)10.1016/S0921-5093(97)00782-X |
[5] | N. Srinivasan, Y.V.R.K. Prasad, Metall. Mater. Trans. A 25, 2275(1994)10.1007/BF02652327 |
[6] | B.F. Guo, H.P. Ji, X.G. Liu, L. Gao, J. Mater. Eng. Perform. 21, 1455(2012)10.1007/s11665-011-0031-0 |
[7] | S. Venugopal, S.L. Mannan, Y.V.R.K. Prasad, Metall. Trans. A 23, 3093(1992)10.1007/BF02646128 |
[8] | S.P. Tan, Z.H. Wang, S.C. Cheng, Mater. Sci. Eng. A 517, 312(2009)10.1016/j.msea.2009.04.028 |
[9] | Y.V.R.K. Prasad, Metall. Mater. Trans. A 27, 235(1996)10.1007/BF02647765 |
[10] | Y.V.R.K. Prasad, H.L. Gegel, S.M. Draivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.A. Barker, Metall. Trans. A 15, 1883(1984)10.1007/BF02664902 |
[11] | Y.V.R.K. Prasad, Mater. Eng. Perform. 12, 638(2003)10.1361/105994903322692420 |
[12] | H.ZieglerinProgress in solid mechanics, vol. 4, ed. by I.N. Sneedon, R. Hill(Wiley, New York, 1963), p. 63 |
[13] | S.C. Medeoros, W.G. Frazier, Y.V.R.K. Prasad, Metall. Mater. Trans. A 31, 2317(2000)10.1007/s11661-000-0147-6 |
[14] | S.J. Lee, Y.K. Lee, Mater. Des. 29, 1840(2008)10.1016/j.matdes.2008.03.009 |
[15] | J.B. Ren, Z.G. Song, W.J. Zheng, J.Z. Xiang, J. Iron Steel Res. 24, 41(2012). (in Chinese) |
[16] | Y. Wang, W.Z. Shao, L. Zhen, L. Yang, X.M. Zhang, Mater. Sci. Eng. A 497, 479(2008)10.1016/j.msea.2008.07.046 |
[17] | Y.V.R.K. Prasad, N. Ravichandran, Bull. Mater. Sci. 14, 1241(1991)10.1007/BF02744618 |
[18] | C.M. Sellars, W.J.M. Tegart, Int. Metall. Rev. 17, 1(1972) |
[19] | H. Mirzadeh, J.M. Cabrera, J.M. Prado, A. Najafizadeh, Mater. Sci. Eng. A 528, 3876(2011)10.1016/j.msea.2011.01.098 |
[20] | S.I. Kim, Y.C. Yoo, Mater. Sci. Eng. A 311, 108(2001)10.1016/S0921-5093(01)00917-0 |
[21] | Q.L.Yong, Secondary phases in steels(Metallurgy Industry press, Beijing, 2006), pp. 85–87. in Chinese |
[22] | W.F.SmithJ.Hashemi, Foundations of materials science and engineering(China Machine Press, Beijing, 2011), pp. 204–206 |
[23] | L. Briottet, J.J. Jonas, F. Montheillet, Acta Mater. 44, 1665(1996)10.1016/1359-6454(95)00257-X |
[24] | Y.Q. Ning, Z.K. Yao, H. Li, Mater. Sci. Eng. A 527, 961(2010)10.1016/j.msea.2009.09.011 |
[25] | S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, R. Srinivasan, Mater. Sci. Eng. A 193, 198(2000)10.1016/S0921-5093(00)01053-4 |
[26] | S.H. Cho, S.I. Kim, Y.C. Yoo, J. Mater. Sci. Lett. 16, 1836(1997)10.1023/A%3A1018581005040 |
[27] | R. Raj, Metall. Trans. A 12, 1089(1981)10.1007/BF02643490 |
[28] | Y. Wang, L. Zhen, W.Z. Shao, L. Yang, X.M. Zhang, J. Alloys Compd. 474, 341(2009)10.1016/j.jallcom.2008.06.079 |
[29] | Y.V.R.K. Prasad, T. Seshacharyulu, Int. Mater. Rev. 43, 245(1998)10.1179/imr.1998.43.6.243 |
[30] | S.L. Guo, D.F. Li, H.J. Pen, Q.M. Guo, J. Hu, J. Nucl. Mater. 410, 52(2011)10.1016/j.jnucmat.2010.12.309 |
[31] | A.H. Asli, A.Z. Hanzaki, J. Mater. Sci. Technol. 25, 603(2009) |
[1] | Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 705-715. |
[2] | Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 693-704. |
[3] | Le Zhang, Wei Wang, M. Babar Shahzad, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of an Ultra-High-Strength Fe-Ni-Co-Based Maraging Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1161-1172. |
[4] | Yi-Tao Wang, Jian-Bo Li, Yun-Chang Xin, Xian-Hua Chen, Muhammad Rashad, Bin Liu, Yong Liu. Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 932-943. |
[5] | Ning Yan, Hong-Shuang Di, Hui-Qiang Huang, R D. K. Misra., Yong-Gang Deng. Hot Deformation Behavior and Processing Maps of a Medium Manganese TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1021-1031. |
[6] | Chao Liu, Ming-Chun Zhao, Tugudur Unenbayar, Ying-Chao Zhao, Bin Xie, Yan Tian, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of a New Nuclear Use Reduced Activation Ferritic/Martensitic Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 825-834. |
[7] | Kun-Kun Deng, Cui-Ju Wang, Kai-Bo Nie, Xiao-Jun Wang. Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 413-525. |
[8] | Wilasinee Kingkam, Cheng-Zhi Zhao, Hong Li, He-Xin Zhang, Zhi-Ming Li. Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 495-505. |
[9] | Yu-Cheng Zhang, Zhen-Sheng Meng, Yang Meng, Xin-Hua Ju, Zhong-Hang Jiang, Ze-Jun Ma. Effect of Nb Content on the Hot Deformation Behavior of S460ML Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 526-534. |
[10] | Tong Xi, Lu Yin, Chun-Guang Yang, Ke Yang. Hot Deformation Behavior and Processing Map of a Cu-Bearing 2205 Duplex Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1537-1548. |
[11] | Chuan Wu, Shuang Han. Hot Deformation Behavior and Dynamic Recrystallization Characteristics in a Low-Alloy High-Strength Ni-Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(9): 963-974. |
[12] | H. Q. Huang, H. S. Di, N. Yan, J. C. Zhang, Y. G. Deng, R. D. K. Misra, J. P. Li. Hot Deformation Behavior and Processing Maps of a High Al-low Si Transformation-Induced Plasticity Steel: Microstructural Evolution and Flow Stress Behavior [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 503-514. |
[13] | Li-Xiong Xu, Hui-Bin Wu, Xin-Tian Wang. Influence of Microstructural Evolution on the Hot Deformation Behavior of an Fe-Mn-Al Duplex Lightweight Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 389-400. |
[14] | Jun Zhang, Cheng-Wu Zheng, Dian-Zhong Li. A Multi-phase Field Model for Static Recrystallization of Hot Deformed Austenite in a C-Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 208-215. |
[15] | Zhao-Yang Jin, Nan-Nan Li, Kai Yan, Jing-Xin Chen, Dong-Lai Wei, Zhen-Shan Cui. Controlling Flow Instability in Straight Spur Gear Forging Using Numerical Simulation and Response Surface Method [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 82-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||