Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (1): 140-148.DOI: 10.1007/s40195-013-0011-5
• research-article • Previous Articles Next Articles
Christoph Heinze1(), Thomas Michael1, Andreas Pittner1, Michael Rethmeier1,2
Received:
2013-07-13
Revised:
2013-08-04
Online:
2014-02-25
Published:
2014-03-11
Christoph Heinze, Thomas Michael, Andreas Pittner, Michael Rethmeier. Microcrack Formation During Gas Metal Arc Welding of High-Strength Fine-Grained Structural Steel[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 140-148.
Add to citation manager EndNote|Ris|BibTeX
Material | C | Si | Mn | Cu | P | S | Cr | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Base material—test heat | 0.16 | 0.31 | 0.94 | – | 0.011 | 0.001 | 0.55 | 0.30 | 1.00 | Bal. |
DIN EN 10025-6 (maximum values) | 0.20 | 0.8 | 1.7 | 0.5 | 0.020 | 0.01 | 1.5 | 0.70 | 2.00 | Bal. |
Filler material—test heat | 0.09 | 0.81 | 1.76 | – | 0.012 | 0.011 | 0.36 | 0.58 | 2.19 | Bal. |
Table 1 Chemical composition (wt%) of base and filler material, base material composition measured by spark emission spectroscopy, and filler material composition provided by manufacturer; yield strength level of both filler and base material is 960 MPa
Material | C | Si | Mn | Cu | P | S | Cr | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|---|---|---|
Base material—test heat | 0.16 | 0.31 | 0.94 | – | 0.011 | 0.001 | 0.55 | 0.30 | 1.00 | Bal. |
DIN EN 10025-6 (maximum values) | 0.20 | 0.8 | 1.7 | 0.5 | 0.020 | 0.01 | 1.5 | 0.70 | 2.00 | Bal. |
Filler material—test heat | 0.09 | 0.81 | 1.76 | – | 0.012 | 0.011 | 0.36 | 0.58 | 2.19 | Bal. |
Factor | Symbol | Level | Unit | |||
---|---|---|---|---|---|---|
-1 | 0 | 1 | Δ | |||
Welding speed | vw | 35 | 40 | 45 | 5 | cm/min |
Wire feeding rate | RWF | 11 | 12 | 13 | 1 | m/min |
Groove angle | α | 30 | 35 | 40 | 5 | Deg. |
Preheat temperature | Tp | 50 | 75 | 100 | 25 | °C |
Table 2 Factors of statistical design of experiment
Factor | Symbol | Level | Unit | |||
---|---|---|---|---|---|---|
-1 | 0 | 1 | Δ | |||
Welding speed | vw | 35 | 40 | 45 | 5 | cm/min |
Wire feeding rate | RWF | 11 | 12 | 13 | 1 | m/min |
Groove angle | α | 30 | 35 | 40 | 5 | Deg. |
Preheat temperature | Tp | 50 | 75 | 100 | 25 | °C |
Fig. 2 Presentation of crack opening: a scheme of cross-section including crack position; b image of opened crack; c close-up of opened crack; d SEM overview of opened crack
Factor | Bead 1 | Bead 2 | Whole sample |
---|---|---|---|
Welding speed | 0.42 | 0.02 | 0.04 |
Wire feeding rate | 0.21 | 0.38 | 0.28 |
Groove angle | 0.58 | 0.50 | 0.49 |
Preheat temperature | 0.78 | 0.32 | 0.40 |
Table 3 Overview about probabilities of single factors on number of microcracks
Factor | Bead 1 | Bead 2 | Whole sample |
---|---|---|---|
Welding speed | 0.42 | 0.02 | 0.04 |
Wire feeding rate | 0.21 | 0.38 | 0.28 |
Groove angle | 0.58 | 0.50 | 0.49 |
Preheat temperature | 0.78 | 0.32 | 0.40 |
Fig. 11 Fracture surfaces of the Charpy V-notch sample after tested at -40 °C: a SEM image showing both fracture surface and microcrack surface; b Two measurement areas for AES indicated (1 fracture surface, 2 microcrack surface)
[1] | J. Chen, C. Schwenk, C.S. Wu, M. Rethmeier, Int. J. Heat Mass Transf. 55, 102(2012) |
[2] | E. Karadeniz, U. Ozsarac, C. Yildiz, Mater. Des. 28, 649(2007)10.1016/j.matdes.2005.07.014 |
[3] | S. Schwantes, P. Gerster, K. R. Schulze,inInternational Aachen Welding Conference (Shaker, Aachen, 2007), pp. 543–557 |
[4] | M.J. Cieslak,Cracking phenomena associated with welding, 1st edn.(ASM International, Materials Park, 1997) |
[5] | D.J. Allen, B. Chew, P. Harris, Weld J. 61, 212(1982) |
[6] | J.M.F. Mota, R.L. Apps, Weld J. 61, 222(1982) |
[7] | S. Kou,Welding metallurgy, 3rd edn.(Wiley, Hoboken, 2002)10.1002/0471434027 |
[8] | D.G. Eskin, L. Katgerman, Metall. Trans. A 38, 1511(2007)10.1007/s11661-007-9169-7 |
[9] | E. Tasak, A. Ziewiec, J. Adamiec, Weld. Int. 25, 409(2011)10.1080/09507111003655200 |
[10] | V. Shankar, J.H. Devletian, Sci. Technol. Weld Join 10, 236(2005)10.1179/174329305X39266 |
[11] | DIN EN 10025-6:2011,Warmgewalzte Erzeugnisse aus Baustählen - Teil 4: Technische Lieferbedingungen für Flacherzeugnisse aus Stählen mit höherer Streckgrenze im vergüteten Zustand (Deutsches Institut für Normung e.V, EN 10025-6:2011, Warmgewalzte Erzeugnisse aus Baustählen - Teil 4: Technische Lieferbedingungen für Flacherzeugnisse aus Stählen mit höherer Streckgrenze im vergüteten Zustand (Deutsches Institut für Normung e.V, Berlin, 2011) |
[12] | T. Böllinghaus, T. Kannengießer, M. Neuhaus,in Mathematical Modelling of Weld Phenomena 7, ed. by H. Cerjak, H.K.D.H. Bhadeshia, E. Kozeschnik (Technical University, Graz, 2005) |
[13] | T. Böllinghaus, T. Kannengießer, M. Neuhaus, W. Florian,in Euromat 2003, Lausanne, Schweiz, 2003 |
[14] | H. Heinemann, G. Horn, S. Thieme, Metall-Aktivgasschweißen des hochfesten, vergüteten Feinkornbaustahls S960QL mit Blechdicken bis 12 mm (DVS Media, Schweißen und Schneiden, Düsseldorf, 1997) |
[15] | L. Engel, H. Klingele,An Atlas of Metal Damage, 1st edn.(Wolfe Science in association with Hanser, Munich, 1981) |
[16] | VDEh Stahlinstitut,The appearance of cracks and fractures in metallic materials, 2nd edn.(Verlag Stahleisen GmbH, Düsseldorf, 1996) |
[1] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[2] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[3] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[4] | Jinyong Gao, Lijun Yang, Lei Cui, Peng Lu, Jun Yang, Yanjun Gao. Improving the Weld Formation and Mechanical Properties of the AA-5A06 Friction Pull Plug Welds by Axial Force Control [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 828-838. |
[5] | Guang-Da Sun, Li Zhou, Ren-Xiao Zhang, Ling-Yun Luo, Hao Xu, Hong-Yun Zhao, Ning Guo, Di Zhang. Effect of Sleeve Plunge Depth on Interface/Mechanical Characteristics in Refill Friction Stir Spot Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 551-560. |
[6] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[7] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. |
[8] | Nan Xu, Ruo-Nan Feng, Wen-Feng Guo, Qi-Ning Song, Ye-Feng Bao. Effect of Zener-Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 319-326. |
[9] | Mao-Kai Chen, Jun Xie, De-Long Shu, Gui-Chen Hou, Shu-Ling Xun, Jin-Jiang Yu, Li-Rong Liu, Xiao-Feng Sun, Yi-Zhou Zhou. Effect of Long-Term Thermal Exposures on Tensile Behaviors of K416B Nickel-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1699-1708. |
[10] | Jun-Lei Zhang, Han Liu, Yu-Lu Xie, Guang-Sheng Huang, Xiang Chen, Bin Jiang, Ai-Tao Tang, Fu-Sheng Pan. Microstructure Distribution and Tensile Anisotropy of Dissimilar Friction Stir Welded AM60 and AZ31 Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1487-1504. |
[11] | Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570. |
[12] | Dan Chen, Jinglong Li, Huaxia Zhao, Zhejun Tan, Jiangtao Xiong. Effect of Submillimeter Variation in Plunge Depth on Microstructure and Mechanical Properties of FSLW 2A12 Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 165-171. |
[13] | Hua Zhang, Chang-Yu Zhao, Qi-Long Guo, Rui-Sheng Yang, Li-Yuan Liu, San-Bao Lin. Microstructure and Corrosion Behavior of Friction Stir Welded Al Alloy Coated by In Situ Shot-Peening-Assisted Cold Spray [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 172-182. |
[14] | Gaoqiang Chen, Shuai Zhang, Yucan Zhu, Chengle Yang, Qingyu Shi. Thermo-mechanical Analysis of Friction Stir Welding: A Review on Recent Advances [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 3-12. |
[15] | Xiao-Song Feng, Song-Bin Li, Li-Na Tang, Hui-Min Wang. Refill Friction Stir Spot Welding of Similar and Dissimilar Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 30-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||