Please wait a minute...
Acta Metallurgica Sinica(English letters)  2019, Vol. 32 Issue (12): 1459-1469    DOI: 10.1007/s40195-019-00923-1
Orginal Article Current Issue | Archive | Adv Search |
Effect of Cl- Concentration on the SCC Behavior of 13Cr Stainless Steel in High-Pressure CO2 Environment
Jin-Jin Zhao1,2, Xian-Bin Liu1(), Shuai Hu1,2, En-Hou Han1
1 National Engineering Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Download:  HTML  PDF(3859KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An effect of Cl- concentration on the stress corrosion cracking (SCC) behavior of 13Cr stainless steel was investigated by employing electrochemical measurements and the slow strain rate tensile tests. These tests were conducted in various solutions with different concentrations of NaCl at 90 °C under 3 MPa CO2 with 3 MPa N2. The results indicate that the passive film of the specimen formed in the 10% NaCl solution has the best protective effect on the matrix. The SCC susceptibility does not increase with increasing the chloride ion concentration, the lowest SCC susceptibility occurs when the NaCl concentration is 10%, and the specimens show higher SCC susceptibility in the 5% NaCl and 20% NaCl solutions.

Key words:  13Cr      Cl-      Stress corrosion cracking      CO2 environment     
Received:  07 March 2019      Published:  25 November 2019

Cite this article: 

Jin-Jin Zhao, Xian-Bin Liu, Shuai Hu, En-Hou Han. Effect of Cl- Concentration on the SCC Behavior of 13Cr Stainless Steel in High-Pressure CO2 Environment. Acta Metallurgica Sinica(English letters), 2019, 32(12): 1459-1469.

URL: 

http://www.amse.org.cn/EN/10.1007/s40195-019-00923-1     OR     http://www.amse.org.cn/EN/Y2019/V32/I12/1459

Element C Cr Mn Si Cu Ni S P Fe
Wt% 0.2 13.05 0.54 0.54 0.06 0.13 0.007 0.015 Bal.
Table 1  Chemical composition of 13Cr stainless steel
Fig. 1  The microstructure of 13Cr stainless steel samples
Fig. 2  Polarization curves of 13Cr stainless steel in NaCl solution with various chlorine concentrations
NaCl (%) T (°C) P (MPa) Ecorr (mV) Icorr (uA cm-2)
5 90 6 -?467.58 69.47
10 90 6 -?609.47 42.58
20 90 6 -?452.137 117.40
Table 2  Electrochemical parameters of the polarization curves for 13Cr stainless steel immersed in various NaCl solutions
Fig. 3  Mott-Schottky curves of 13Cr stainless steel in NaCl solution with various chlorine contents
Fig. 4  The NA or ND of specimens in NaCl solution with various chloride ion concentrations after immersing 24 h at the OCP
Fig. 5  Stress-strain curves of 13Cr stainless steel in the different NaCl solutions at 90 °C
Fig. 6  NaCl content dependence of the SCC susceptibilities with elongation loss rate
Fig. 7  Microscopic morphologies of SSRT fracture of 13Cr steel in inert environment in air at 90 °C
Fig. 8  Microscopic morphologies of SSRT fracture of 13Cr steel in inert environment in the 0% NaCl solution at 90 °C with 3 MPa CO2 partial pressure
Fig. 9  Microscopic morphologies of SSRT fracture of 13Cr steel in inert environment in the 5% NaCl solution at 90 °C with 3 MPa CO2 partial pressure
Fig. 10  Microscopic morphologies of SSRT fracture of 13Cr steel in inert environment in the 10% NaCl solution at 90 °C with 3 MPa CO2 partial pressure
Fig. 11  Microscopic morphologies of SSRT fracture of 13Cr steel in inert environment in the 20% NaCl solution at 90 °C with 3 MPa CO2 partial pressure
Constant
$ {\mathbf{K}}_{{\mathbf{H}}} = \frac{{{\mathbf{C}}_{{{\mathbf{CO}}_{2} }} }}{{{\mathbf{\varphi }} \cdot {\mathbf{P}}_{{{\mathbf{CO}}_{2} }} }} = \frac{14.5}{1.00258} \times 10^{{ - \left( {2.27 + 5.65 \times 10^{ - 3} {\mathbf{T}}_{{\mathbf{f}}} - 8.06 \times 10^{ - 6} {\mathbf{T}}_{{\mathbf{f}}}^{2} + 0.075 \times {\mathbf{I}}} \right)}} \left( {{\mathbf{molar}}/{\mathbf{bar}}} \right) $
$ {\mathbf{K}}_{{{\mathbf{Hy}}}} = \frac{{{\mathbf{C}}_{{{\mathbf{H}}_{2} {\mathbf{CO}}_{3} }} }}{{{\mathbf{C}}_{{{\mathbf{CO}}_{2} }} }} = 2.58 \times 10^{ - 3} $
$ {\mathbf{K}}_{1} = \frac{{\gamma_{ \pm 1}^{2} {\mathbf{C}}_{{{\mathbf{HCO}}_{3}^{ - } }} {\mathbf{C}}_{{{\mathbf{H}}^{ + } }} }}{{{\mathbf{C}}_{{{\mathbf{H}}_{2} {\mathbf{CO}}_{3} }} }} = 387.6 \times 10^{{ - \left( {6.41 - 1.594 \times 10^{ - 3} {\mathbf{T}}_{{\mathbf{f}}} + 8.52 \times 10^{ - 6} {\mathbf{T}}_{{\mathbf{f}}}^{2} - 3.07 \times 10^{ - 5} {\mathbf{p}} - 0.4772 \times {\mathbf{I}}^{{1/2}} + 0.1180 \times {\mathbf{I}}} \right)}} \left( {{\mathbf{molar}}} \right) $
$ {\mathbf{K}}_{2} = \frac{{{\mathbf{C}}_{{{\mathbf{H}}^{ + } }} {\mathbf{C}}_{{{\mathbf{CO}}_{3}^{2 - } }} }}{{{\mathbf{C}}_{{{\mathbf{HCO}}_{3}^{ - } }} }} = 10^{{ - \left( {10.61 - 4.97 \times 10^{ - 3} {\mathbf{T}}_{{\mathbf{f}}} + 1.331 \times 10^{ - 5} {\mathbf{T}}_{{\mathbf{f}}}^{2} - 2.624 \times 10^{ - 5} {\mathbf{p}} - 1.86 \times {\mathbf{I}}^{{1/2}} + 0.3466 \times {\mathbf{I}}} \right)}} \left( {{\mathbf{molar}}} \right) $
$ {\mathbf{K}}_{{\mathbf{W}}} = {\mathbf{C}}_{{{\mathbf{H}}^{ + } }} {\mathbf{C}}_{{{\mathbf{OH}}^{ - } }} = 10^{{ - \left( {29.3868 - 0.0737549{\mathbf{T}}_{{\mathbf{k}}} + 7.47881 \times 10^{ - 5} {\mathbf{T}}_{{\mathbf{k}}}^{2} } \right)}} \left( {{\mathbf{molar}}^{2} } \right) $
Table 3  Experimental formulas for the calculation of the equilibrium constant
NaCl (wt%) $ {\mathbf{C}}_{{{\mathbf{CO}}_{2} }} $ $ {\mathbf{C}}_{{{\mathbf{H}}_{2} {\mathbf{CO}}_{3} }} $ $ {\mathbf{C}}_{{{\mathbf{HCO}}_{3}^{ - } }} $ $ {\mathbf{C}}_{{{\mathbf{CO}}_{3}^{2 - } }} $ $ {\mathbf{C}}_{{{\mathbf{H}}^{ + } }} $
5 0.2906 7.4977E-4 7.5626E-4 6.80145E-10 7.5626E-4
10 0.2466 6.3633E-4 7.6903E-4 9.70197E-10 7.6903E-4
20 0.1716 4.4277E-4 6.7202E-4 9.85576E-10 6.7202E-4
Table 4  Ion concentrations (M) in the NaCl solution with various chlorine contents in the environment of 90 °C and 3 MPa CO2 partial pressure
[1] Z. Zhi, H. Wang, J. Nat. Gas Sci. Eng. 692, 31(2016)
[2] L.W. Wang, L.J. Cheng, J.R. Li, Z.F. Zhu, S.W. Bai, Z.Y. Cui, Materials 465, 11 (2018)
[3] X.Q. Yue, M.F. Zhao, L. Zhang, H.J. Zhang, D.P. Li, M.X. Lu, RSC Adv. 24679, 8(2018)
[4] S.D. Zhu, J.F. Wei, R. Cai, Z.Q. Bai, G.S. Zhou, Eng. Failure Anal. 2222, 18(2011)
[5] H. Wu, C. Li, K. Fan, W. Zhang, F. Xue, G. Zhang, X. Wang, Mater. Corros. (2018). https://doi.org/10.1002/maco.201810201
[6] D. Bauernfeind, G. Mori, Proceeding to the NACE International on Corrosion 2003, Houston, Texas, U.S., Paper No. 03257 (2003)
[7] Z. Wang, J. Wang, E. Han, W. Ke, Mater. Corros. 583, 58(2007)
[8] D.T. Hoelzer, B.A. Pint, I.G. Wright, J. Nucl. Mater. 1306, 283(2000)
[9] R.B. Rebak, T.E. Perez, Proceeding to the NACE International on Corrosion 2017, Houston, Texas, U.S., Paper No. 8933 (2017)
[10] Z.G. Liu, X.H. Gao, C. Yu, L.X. Du, J.P. Li, P.J. Hao, Acta Metall. Sin. (Engl. Lett.) 739, 28(2015)
[11] K. Denpo, H. Ogawa, Corrosion 442, 49 (1993)
[12] H. Asahi, M. Ueno, T. Yonezawa, Corrosion 537, 50 (1994)
[13] J. Konys, S. Fodi, J. Hausselt, H. Schmidt, V. Casal, Corrosion 45, 55 (1999)
[14] C. Dewaard, D.E. Milliams, Corrosion 131, 31 (1975)
[15] K. Videm, A. Dugstad, Mater. Perform. 46, 4(1989)
doi: 10.1638/2013-0116.1 pmid: 26667552
[16] C. Dewaard, U. Lotz, D.E. Milliams, Corrosion 976, 47 (1991)
[17] S. Nesic, J. Postlethwaite, S. Olsen, Corrosion 280, 52 (1996)
[18] Q.Y. Liu, L.J. Mao, S.W. Zhou, Corros. Sci. 165, 84(2014)
[19] M.H. Ezuber, Mater. Des. 3420, 30(2009)
[20] R.H. Hausler, Advances in CO 2Corrosion, vol. 1 (NACE, Houston, 1984), pp. 72-86
[21] G. Schmitt, Advances in CO 2Corrosion, vol. 1 (NACE, Houston, 1984), pp. 1-6
[22] G. Svenningsen, B.H. Morland, A. Dugstad, B. Thomas, Energy Procedia 6778, 114 (2017)
[23] Q. Yu, C.F. Dong, J.X. Liang, Z.B. Liu, K. Xiao, X.G. Li, J. Iron.Steel Res.Int. 282, 24(2017)
[24] G.X. Zhao, M. Zheng, X.H. Lv, X.H. Dong, H.L. Li, Met. Mater. Int. 135, 11(2005)
doi: 10.7326/0003-4819-135-11-200112040-00008 pmid: 11730397
[25] R.K.S. Raman, R. Rihan, R.N. Ibrahim, J. Electrochem. Soc. 154, C658-C662 (2007)
[26] V. Vignal, C. Valot, R. Oltra, M. Verneau, Corros. Sci. 1477, 44(2002)
[27] A.M.P. Simoes, M.G.S. Ferreira, B. Rondot, J. Electrochem. Soc. 82, 137(1990)
[28] D.D. Macdonald, J. Electrochem. Soc. 3434, 139(1992)
[29] G.A. Zhang, Y.F. Cheng, Corros. Sci. 960, 52(2010)
[30] M. Nakahara, T. Shoji, Corrosion 634, 52 (1996)
[31] B.S. Kumara, V. Kaina, M. Singhd, B. Vishwanadh, Mater. Sci. Eng. A 140, 700 (2017)
[32] E.N. Zhou, Z.H. Yu, J.K. Qu, T. Qi, X.Y. Han, G.Q. Zhang, Acta Phys. Chim. Sin. 2567, 28(2012)
[33] R. Lange, H. Staaland, A. Mostad, J. Exp. Mar.Biol. Ecol. 217, 9(1972)
[34] G.A. Zhang, Y.F. Cheng, Corros. Sci. 87, 51(2009)
[35] M. Nordsveen, S. Nesic, R. Nyborg, A. Stangeland, Corrosion 443, 59 (2003)
[36] M. Shayegani, A. Afshar, M. Ghorbani, M. Rahmaniyan, Corros. Eng. Sci. Technol. 290, 43(2008)
[37] Y. Garsany, D. Pletcher, B. Hedges, J. Electroanal. Chem. 538, 285(2002)
[38] J.K. Heuer, J.F. Stubbins, Corros. Sci. 1231, 41(1999)
[39] S. Nesic, M. Nordsveen, R. Nyborg, A. Stangeland, Corrosion/2001, Paper No. 01040, Nace, Houston (2001)
[40] Q. Yang, L.J. Qiao, S. Chiovelli, J. Electroanal. Soc. 148, B29-B35 (2001)
[41] J. Han, J.W. Carey, J. Zhang, J. Appl. Electrochem. 741, 41(2011)
[1] Hong-Liang Ming,Zhi-Ming Zhang,Peng-Yuan Xiu,Jian-Qiu Wang,En-Hou Han,Wei Ke,Ming-Xing Su. Microstructure, Residual Strain and Stress Corrosion Cracking Behavior in 316L Heat-Affected Zone[J]. 金属学报英文版, 2016, 29(9): 848-858.
[2] Jian Chen, Jian-Qiu Wang, En-Hou Han, Wei Ke, D. W. Shoesmith. Effect of Hydrogen on Corrosion and Stress Corrosion Cracking of AZ91 Alloy in Aqueous Solutions[J]. Acta Metallurgica Sinica(English letters), 2016, 29(1): 1-7.
[3] Zhiyong LIU, Cuiwei DU, Xin ZHANG, Fuming WANG,Xiaogang LI. Effect of pH Value on Stress Corrosion Cracking of X70 Pipeline Steel in Acidic Soil Environment[J]. Acta Metallurgica Sinica(English letters), 2013, 26(4): 489-496.
[4] Lining XU, Yao MENG, Yunguang SHI,Yan LIU. Pitting Corrosion of 13Cr Steel in Oxygen-free Completion Fluids of Organic Salt[J]. Acta Metallurgica Sinica(English letters), 2013, 26(3): 271-276.
[5] J.X. Pan, K.Y. Kim. THE EFFECT OF W ON THE REPASSIVATION BEHAVIOR OF Ni-ADDED STAINLESS STEELS[J]. Acta Metallurgica Sinica(English letters), 2005, 18(4): 489-496 .
[6] S.Q. Li; J.I. Dickson and J.P. Bailon (Central Iron and Steel Research Institute (CISRI), Beijing 100081, China)(Ecole Polytecnique de Montreal, Montreal H3C 3A7, Canada). STUDY ON FRACTOGRAPHY OF TRANSGRANULAR SCC OF 70Cu-3OZn IN AN AMMONIACAL SOLUTION[J]. Acta Metallurgica Sinica(English letters), 1998, 11(5): 347-357.
[7] ZHANG Yue;CHU Wuyang;XIAO Jimei(Department of Materials Physics,University of Science and Technology Beijing,Beijing 100083,China) OUYANG Shixi;YUAN Runzhang(State Key Laboratory for Synthesis and Processing of Advanced Materials.Wuhan University of Technology,Wuhan 430070,China). INTERPHASE STRESS CORROSION CRACKING OF ALLOY Ti-24Al-11Nb IN METHANOL SOLUTION[J]. Acta Metallurgica Sinica(English letters), 1996, 9(2): 121-128.
[8] HUANG Yanliang CAO Chu'nan LIN Haichao LU Ming Corrosion Science Laboratory,Institute of Corrosion and Protection of Metals,Academia Sinica,Shenyang,China Ph D student,Institute of Corrosion and Protection of Metals,Academia Sinica,Shenyang 110015,China. SCC MECHANISM OF STAINLESS STEEL AISI 321 IN ACIDIC CHLORIDE SOLUTION[J]. Acta Metallurgica Sinica(English letters), 1993, 6(12): 416-420.
[9] LU Minxu LIU Xiaokun WANG Jianjun FU Xiangjiong ZHENG Xiulin Northwestern Polytechnical University,Xi'an,China Lecturer,Department No.4.Northwestern Polytechnical University,Xi'an 710072,China. EFFECTS OF HEAT TREATMENT AND ENVIRONMENT ON CRACK PROPAGATION RATE IN STEEL GC-4 UNDER CORROSION FATIGUE AND STRESS CORROSION[J]. Acta Metallurgica Sinica(English letters), 1992, 5(9): 183-189.
[10] QIAO Lijie LIU Rui XIAO Jimei University of Science and Technology Beijing,Beijing,China. CORRELATION BETWEEN STRESS COMPONENTS AND STRESS CORROSION CRACKS IN BRASS Lecturer,Department of Materials Physics,University of Science and Technology Beijing,Beijing 100083,China[J]. Acta Metallurgica Sinica(English letters), 1992, 5(9): 178-182.
[11] WANG Zhengfu ZHU Ziyong KE Wei Corrosion Science Laboratory,Institute of Corrosion and Protection of Metals,Academia Sinica,Shenyang,ChinaZHANG Yun HU Zhuangqi Institute of Metal Research,Academia Sinica,Shenyang,China. BEHAVIOUR AND MECHANISM OF STRESS CORROSION CRACKING FOR Al-Li-Cu-Mg ALLOY[J]. Acta Metallurgica Sinica(English letters), 1992, 5(11): 391-395.
[12] FENG Tao CHEN Liangshi KE Wei Corrosion Science Laboratory,Institute of Corrosion and Protection of Metals,Academia Sinica,Shenyang,China. EFFECT OF POTENTIAL ON INTERACTION BETWEEN STRESS CORROSION CRACKING AND CORROSION FATIGUE OF AUSTENITIC STAINLESS STEEL IN BOILING 42% MgCl_2 SOLUTION[J]. Acta Metallurgica Sinica(English letters), 1991, 4(9): 168-173.
[13] LI Guangfu WU Rengen Harbin Institute of Technology,Harbin,China LI Guangfu Division of Metallography,Harbin Institute of Technology,Harbin 150006,China. IMPROVEMENT ON SUSCEPTIBILITY OF ULTAR-HIGH STRENGTH STEEL TO STRESS CORROSION CRACKING BY HIGH TEMPERATURE QUENCHING[J]. Acta Metallurgica Sinica(English letters), 1990, 3(3): 213-217.
[14] LIN Chengfu WEN Lishi QIAN Shengwei Institute of Metal Research,Academia Sinica,Shenyang,ChinaKANG Datao Yanshan University,Qinhuangdao,China LIN Chengfu,Institute of Metal Research,Academia Sinica,Shenyang 110015,China. CORROSION FAILURE ANALYSIS OF FLAME SPRAYED Zn-A115 COATING IN SEA WATER[J]. Acta Metallurgica Sinica(English letters), 1990, 3(11): 326-329.
[15] ZHAO Pu LU Shiying Central Iron and Steel Research Institute,Ministry of Metallurgical Industry,Beijing,,China ZHAO Pu Engineer,Central Iron and Steel Research Institute,Ministry of Metallurgical Industry,Beijing,China. MICROSTRUCTURE AND RESISTANCE TO LOCALIZED CORROSION OF DEFORMED 18-5-Nb DUPLEX STAINLESS STEEL[J]. Acta Metallurgica Sinica(English letters), 1989, 2(9): 172-176.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.