Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (9): 1397-1408.DOI: 10.1007/s40195-023-01571-2
Liping Wu1, Chen Liu1, Jie Wei1, Junhua Dong1(), Lin Zhao1, Chao Li1, Wei Ke1, Yiqing Chen2, Changgang Wang1(
)
Received:
2023-02-06
Revised:
2023-03-23
Accepted:
2023-04-26
Online:
2023-09-10
Published:
2023-08-25
Contact:
Junhua Dong, jhdong@imr.ac.cn; Changgang Wang, cgwang@imr.ac.cn
Liping Wu, Chen Liu, Jie Wei, Junhua Dong, Lin Zhao, Chao Li, Wei Ke, Yiqing Chen, Changgang Wang. Influence of pH on the Formation, Composition and Protectiveness of Fluoride Conversion Film Deposited on AZ31 Magnesium Alloy in KF Solution[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1397-1408.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a Current decay of AZ31 Mg alloy polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solution with various pH values, b equivalent circuit of electric double layer capacitor. Reproduced with permission from Ref [25]
Fig. 2 Surface morphologies of AZ31 Mg alloy polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solution with various pH values for different time: a, a1, a2, a3 pH 5: 304 s, 1264 s, 2830 s, 16 ks; b, b1, b2, b3 pH 7.5: 1200 s, 1800s, 2700 s, 16 ks; c, c1 pH 9: 530 s, 21.2 ks
Time | Mg (at.%) | O (at.%) | F (at.%) | K (at.%) | |
---|---|---|---|---|---|
pH 5 | 304 s | 94.6 | 5.4 | ||
1264 s | 89 | 6.6 | 4.4 | ||
2830 s | 89.1 | 7.1 | 3.8 | ||
16 ks | 80.1 | 6.8 | 6.8 | 6.3 | |
pH 7.5 | 1200 s | 93.2 | 6.8 | ||
1800s | 88 | 9.2 | 2.8 | ||
2700 s | 87.1 | 9.7 | 3.2 | ||
16 ks | 79.6 | 7.2 | 5.6 | 7.6 | |
pH 9 | 530 s | 93.9 | 6.1 | ||
21.2 ks | 75.4 | 16.1 | 8.5 |
Table 1 Elemental compositions of the polarized surfaces presented in Fig. 2
Time | Mg (at.%) | O (at.%) | F (at.%) | K (at.%) | |
---|---|---|---|---|---|
pH 5 | 304 s | 94.6 | 5.4 | ||
1264 s | 89 | 6.6 | 4.4 | ||
2830 s | 89.1 | 7.1 | 3.8 | ||
16 ks | 80.1 | 6.8 | 6.8 | 6.3 | |
pH 7.5 | 1200 s | 93.2 | 6.8 | ||
1800s | 88 | 9.2 | 2.8 | ||
2700 s | 87.1 | 9.7 | 3.2 | ||
16 ks | 79.6 | 7.2 | 5.6 | 7.6 | |
pH 9 | 530 s | 93.9 | 6.1 | ||
21.2 ks | 75.4 | 16.1 | 8.5 |
Fig. 3 High resolution XPS spectra of AZ31 Mg alloy polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solutions with various pH values for different time: a pH 5, 16 ks; b pH 7.5, 16 ks [25]; c pH 9, 21.2 ks. Reproduced with permission from Ref [25]
Fig. 4 XPS elemental depth profiles of AZ31 Mg alloy polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solutions with various pH values for different time: a pH 5, 16 ks; b pH 7.5, 16 ks [25]; c pH 9, 21.2 ks. Reproduced with permission from Ref [25]
Fig. 5 a Mg(OH)2, b MgF2, c KMgF3, d MgF2 + KMgF3 depth profiles of AZ31 Mg alloy polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solutions with various pH values for different time: pH 5, 16 ks; pH 7.5, 16 ks; pH 9, 21.2 ks. Reproduced with permission from Ref [25]
Fig. 6 XRD patterns of AZ31 Mg alloy polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solution with various pH values for different time: pH 5, 16 ks; pH 7.5, 16 ks; pH 9, 21.2 ks. Reproduced with permission from Ref [25]
Fig. 7 Cross-section morphologies of AZ31 Mg alloy polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solutions with various pH values for different time: a pH 5, 16 ks; b pH 7.5, 16 ks [25]; c pH 9, 21.2 ks. Reproduced with permission from Ref [25]
Fig. 8 a, b Bode plots in 0.1 M NaCl solution of AZ31 polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solution with pH 5, 7.5 and 9 for 16 ks, 16 ks and 21.2 ks, respectively; c the equivalent circuit of the FCF coated AZ31 Mg alloy-NaCl solution interface
pH 5 | pH 7.5 | pH 9 | |
---|---|---|---|
Ym (mS sn cm−2) | 1.308 × 10-5 | 3.914 × 10-9 | 6.918 × 10-9 |
nm | 0.9989 | 0.6023 | 1 |
Rm (Ω cm2) | 34.5 | 35.852 | 37.73 |
YH (mS sn cm−2) | 7.745 × 10-9 | 3.61 × 10-9 | 8.822 × 10-6 |
nH | 0.9856 | 0.9454 | 0.9982 |
RH (Ω cm2) | 39.44 | 54.32 | 19.55 |
Yd (mS sn cm−2) | 8.9 × 10-6 | 7.569 × 10-6 | 1.965 × 10-5 |
nd | 0.8257 | 0.8056 | 0.8712 |
Rd (Ω m2) | 539.2 | 679.3 | 12.16 |
Yf (mS sn cm−2) | 9.534 × 10-9 | 3.63 × 10-10 | 8.066 × 10-9 |
nf | 1 | 0.9123 | 0.9671 |
Rf (Ω cm2) | 11.63 | 1403 | 291.3 |
RL (Ω cm2) | 1116 | 1088 | 467.1 |
L (H) | 893.2 | 1002 | 426.5 |
Table 2 Fitting parameters of the EIS data as shown in Fig. 8
pH 5 | pH 7.5 | pH 9 | |
---|---|---|---|
Ym (mS sn cm−2) | 1.308 × 10-5 | 3.914 × 10-9 | 6.918 × 10-9 |
nm | 0.9989 | 0.6023 | 1 |
Rm (Ω cm2) | 34.5 | 35.852 | 37.73 |
YH (mS sn cm−2) | 7.745 × 10-9 | 3.61 × 10-9 | 8.822 × 10-6 |
nH | 0.9856 | 0.9454 | 0.9982 |
RH (Ω cm2) | 39.44 | 54.32 | 19.55 |
Yd (mS sn cm−2) | 8.9 × 10-6 | 7.569 × 10-6 | 1.965 × 10-5 |
nd | 0.8257 | 0.8056 | 0.8712 |
Rd (Ω m2) | 539.2 | 679.3 | 12.16 |
Yf (mS sn cm−2) | 9.534 × 10-9 | 3.63 × 10-10 | 8.066 × 10-9 |
nf | 1 | 0.9123 | 0.9671 |
Rf (Ω cm2) | 11.63 | 1403 | 291.3 |
RL (Ω cm2) | 1116 | 1088 | 467.1 |
L (H) | 893.2 | 1002 | 426.5 |
Fig. 9 Hydrogen volume in 0.1 M NaCl of AZ31 Mg alloy polarized at − 1.4 V vs SCE in deaerated 0.1 M KF solutions with various pH values for different time: pH 5, 16 ks; pH 7.5, 16 ks; pH 9, 21.2 ks
Compounds and ions | Gibbs free energy (kJ mol−1) |
---|---|
OH− | − 157.244 |
MgF2 | − 1071 |
F− | − 262.34 |
Mg(OH)2 | − 834 |
Table 3 Standard Gibbs free energy of the compounds and ions mentioned in reaction (11)
Compounds and ions | Gibbs free energy (kJ mol−1) |
---|---|
OH− | − 157.244 |
MgF2 | − 1071 |
F− | − 262.34 |
Mg(OH)2 | − 834 |
[1] | N. Wang, S.D. Yang, H.X. Shi, Y.P. Song, H. Sun, Q. Wang, L.L. Tan, S. Guo, J. Magnes, Alloy. 10, 3327 (2022) |
[2] | P. Zhou, L.X. Yang, Y.J. Hou, G.Q. Duan, B.X. Yu, X.J. Li, Y.F. Zhai, B. Zhang, T. Zhang, F.H. Wang, Corro. Commun. 1, 47 (2021) |
[3] | X.M. Wang, G.J. Lu, L.Y. Cui, C.B. Liu, M.B. Kannan, F. Zhang, S.Q. Li, Y.H. Zou, R.C. Zeng, Corro. Commun. 6, 16 (2022) |
[4] | B.J. Wang, D.K. Xu, T.Y. Zhao, L.Y. Sheng, Acta Metall. Sin. -Engl. Lett. 34, 239 (2021) |
[5] | C.A. Grillo, F. Alvarez, M.A. Fernández Lorenzo de Mele, Mater. Sci. Eng. C 58, 372 (2016). |
[6] | L.S. Wang, J.H. Jiang, B. Saleh, Q.Y. Xie, Q. Xu, H. Liu, A.B. Ma, Acta Metall. Sin. -Engl. Lett. 33, 1180 (2020) |
[7] |
D. Tie, R.G. Guan, H.N. Liu, A. Cipriano, Y.L. Liu, Q. Wang, Y.D. Huang, N. Hort, Acta Biomater. 29, 455 (2016)
DOI PMID |
[8] |
S. Yoshizawa, A. Chaya, K. Verdelis, E.A. Bilodeau, C. Sfeir, Acta Biomater. 28, 234 (2015)
DOI PMID |
[9] |
C. Rössig, N. Angrisani, P. Helmecke, S. Besdo, J.M. Seitz, B. Welke, N. Fedchenko, H. Kock, J. Reifenrath, Acta Biomater. 25, 369 (2015)
DOI URL |
[10] | Y.B. Zhao, L.Q. Shi, L.Y. Cui, C.L. Zhang, S.Q. Li, R.C. Zeng, F. Zhang, Z.L. Wang, Acta Metall. Sin. -Engl. Lett. 31, 180 (2018) |
[11] |
A.H.M. Sanchez, B.J.C. Luthringer, F. Feyerabend, R. Willumeit, Acta Biomater. 13, 16 (2015)
DOI URL |
[12] |
E. Willbold, X.N. Gu, D. Albert, K. Kalla, K. Bobe, M. Brauneis, C. Janning, J. Nellesen, W. Czayka, W. Tillmann, Y.F. Zheng, F. Witte, Acta Biomater. 11, 554 (2015)
DOI PMID |
[13] | Y.J. Nie, J.W. Dai, X.B. Zhang, Acta Metall. Sin. -Engl. Lett. 36, 295 (2023) |
[14] | L.P. Wu, L. Zhao, J.H. Dong, W. Ke, N. Chen, Electrochim. Acta 145, 71 (2014) |
[15] | F. Hafili, R. Chaharmahali, K. Babaei, A. Fattah-alhosseini, Corro. Commun. 3, 62 (2021) |
[16] |
X. Liu, Z.L. Yue, T. Romeo, J. Weber, T. Scheuermann, S. Moulton, G. Wallace, Acta Biomater. 9, 8671 (2013)
DOI URL |
[17] | A. Srinivasan, P. Ranjani, N. Rajendran, Electrochim. Acta 88, 310 (2013) |
[18] |
H. Hornberger, S. Virtanen, A.R. Boccaccini, Acta Biomater. 8, 2442 (2012)
DOI PMID |
[19] |
Y. Xin, T. Hu, P.K. Chu, Acta Biomater. 7, 1452 (2011)
DOI PMID |
[20] | L. Mao, L. Shen, J.H. Chen, Y. Wu, M. Kwak, Y. Lu, Q. Xue, J. Pei, L. Zhang, G.Y. Yuan, R. Fan, J.B. Ge, W.J. Ding, Appl. Mater. Interfaces 7, 5320 (2015) |
[21] |
M.D. Pereda, C. Alonso, L. Burgos-Asperilla, J.A. Del Valle, O.A. Ruano, P. Perez, M.A. Fernández Lorenzo de Mele, Acta Biomater. 6, 1772 (2010).
DOI PMID |
[22] | M.D. Pereda, C. Alonso, M. Gamero, J. A. del Valle, M. Fernández Lorenzo de Mele, Mater. Sci. Eng. C 31, 858 (2011). |
[23] | L.P. Wu, L. Zhao, J.H. Dong, W. Ke, X.F. Li, Res. Rev. J. Mater. Sci. 3, 1 (2015) |
[24] |
E. Gulbrandsen, J. Taftø, A. Olsen, Corros. Sci. 34, 1423 (1993)
DOI URL |
[25] | L.P. Wu, J.H. Dong, W. Ke, Electrochim. Acta 105, 554 (2013) |
[26] | B.L. Yu, X.L. Pan, J.Y. Uan, Corros. Sci. 52, 1874 (2010) |
[27] | T.S.N. Sankara Narayanan. ll.S. Park, M.H. Lee, J. Mater. Chem. B 2, 3365 (2014). |
[28] |
K.Y. Chiu, M.H. Wong, F.T. Cheng, H.C. Man, Surf. Coat. Technol. 202, 590 (2007)
DOI URL |
[29] | L.P. Wu, C.G. Wang, D.B. Pokharel, I.N. Etim, L. Zhao, J.H. Dong, W. Ke, N. Chen, J. Mater. Sci. Technol. 34, 2084 (2018) |
[30] |
S. Verdier, N. van der Laak, S. Delalande, J. Metson, F. Dalard, Appl. Surf. Sci. 235, 513 (2004)
DOI URL |
[31] |
J.D. Barajas, J.C. Joya, K.S. Durán, C.A. Hernández-Barrios, A.E. Coy, F. Viejo, Surf. Coat. Technol. 374, 424 (2019)
DOI URL |
[32] | L. Mao, G.Y. Yuan, J.L. Niu, Y. Zong, W.J. Ding, Mater. Sci. Eng. C 33, 242 (2013) |
[33] |
S. Fintová, J. Drábiková, F. Pastorek, J. Tkacz, I. Kuběna, L. Trško, B. Hadzima, J. Minda, P. Doležal, J. Wasserbauer, P. Ptáček, Surf. Coat. Technol. 357, 638 (2019)
DOI URL |
[34] | Z. Li, S.Z. Sun, M.F. Chen, B.D. Fahlman, D. Liu, H.W. Bi, Mater. Sci. Eng. C 75, 1268 (2017) |
[35] | J. Chen, J. Wang, E.H. Han, J.H. Dong, W. Ke, Electrochim. Acta 52, 3299 (2007) |
[36] |
L.Y. Li, L.Y. Cui, L. Bin, R.C. Zeng, X.B. Chen, S.Q. Li, Z.L. Wang, E.H. Han, Appl. Surf. Sci. 465, 1066 (2019)
DOI URL |
[37] |
X. Borgohain, H. Rashid, Environ. Sci. Pollut. Res. 29, 70056 (2022)
DOI |
[38] |
P. Loganathan, S. Vigneswaran, J. Kandasamy, R. Naidu, J. Hazard. Mater. 248-249, 1 (2013)
DOI URL |
[39] |
Y. Tang, X. Guanc, J. Wang, N. Gaob, M.R. Mcphaild, C.C. Chusuei, J. Hazard. Mater. 171, 774 (2009)
DOI URL |
[40] | F. Zhang, C.L. Zhang, L. Song, R.C. Zeng, L.Y. Cui, H.Z. Cui, Acta Metall. Sin. -Engl. Lett. 28, 1373 (2015) |
[41] | C.J. Zhao, C. Ma, J.C. Liu, Z.G. Liu, Y. Chen, Mater. Res. Express 7, 026415 (2020) |
[42] |
S.H. Woo, C.K. Hwangbo, Appl. Opt. 45, 1447 (2006)
DOI URL |
[43] |
B.L. Lin, J.T. Lu, G. Kong, Corros. Sci. 50, 962 (2008)
DOI URL |
[44] |
M. Tavoosi, H. Heydari, A. Hosseinkhani, B. Adelimoghaddam, Bull. Mater. Sci. 38, 895 (2015)
DOI URL |
[45] |
A. Vinogradov, T. Mimaki, S. Hashimoto, R. Valiev, Scr. Mater. 41, 319 (1999)
DOI URL |
[46] | L.P. Wang, Y.M. Lin, Z.X. Zeng, W.M. Liu, Q.J. Xue, L.T. Hu, J.Y. Zhang, Electrochim. Acta 52, 4342 (2007) |
[1] | Xi-Zhao Shi, Zhong-Yu Cui, Jie Li, Bing-Chen Hu, Yi-Qiang An, Xin Wang, Hong-Zhi Cui. Atmospheric Corrosion of AZ31B Magnesium Alloy in the Antarctic Low-Temperature Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1421-1432. |
[2] | Ronghe Gao, Feng Li, Huaqiu Du, Pengda Huo. Dynamic Recrystallization Mechanism and Texture Evolution during Interactive Alternating Extruded Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1292-1304. |
[3] | Minhao Li, Liwei Lu, Yuhui Wei, Min Ma, Weiying Huang. Deformation Behavior and Microstructure Evolution of AZ31 Mg Alloy by Forging-Bending Repeated Deformation with Multi-pass Lowered Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1317-1335. |
[4] | Baotian Du, Zijian Yu, Kang Shi, Ke Liu, Shubo Li, Wenbo Du. Improving the Mechanical Properties of Mg-Gd-Y-Ag-Zr Alloy via Pre-Strain and Two-Stage Ageing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 456-468. |
[5] | Fei-Yang Chen, Peng-Cheng Guo, Zi-Han Jiang, Xiao Liu, Tie-Jun Song, Chao Xie. Abnormal Twinning Behavior and Constitutive Modeling of a Fine-Grained Extruded Mg-8.0Al-0.1Mn-2.0Ca Alloy under High-Speed Impact along Various Directions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 281-294. |
[6] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
[7] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[8] | H. Zhang, H. L. Hao, G. Y. Fu, B. S. Liu, R. G. Li, R. Z. Wu, H. C. Pan. Microstructure and Mechanical Property of Hot-Rolled Mg-2Ag Alloy Prepared with Multi-pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 335-342. |
[9] | Yun Zhang, Chen Jiang, Shaoheng Sun, Wei Xu, Quan Yang, Yongjun Zhang, Shiwei Tian, Xiaoge Duan, Zhe Xu, Haitao Jiang. Microstructural Evolution during Tensile Deformation in TRC-ZA21 Magnesium Alloy with Different Loading Directions and Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 192-214. |
[10] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[11] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[12] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[13] | Rabia Kara, Huseyin Zengin. Tribological and Electrochemical Corrosion Properties of CNT-Incorporated Plasma Electrolytic Oxidation (PEO) Coatings on AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1195-1206. |
[14] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[15] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||