Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (4): 529-551.DOI: 10.1007/s40195-022-01475-7
Siyi Qiu1, Hui Liu1, Menglei Jiang1, Shiling Min1, Yanlin Gu1, Qingyan Wang1, Jing Yang1, Xuejun Li2, Zhuoer Chen3, Juan Hou1,4()
Received:
2022-05-27
Revised:
2022-09-12
Accepted:
2022-07-31
Online:
2023-04-10
Published:
2023-03-31
Contact:
Juan Hou, hou18217727686@163.com
Siyi Qiu, Hui Liu, Menglei Jiang, Shiling Min, Yanlin Gu, Qingyan Wang, Jing Yang, Xuejun Li, Zhuoer Chen, Juan Hou. A Brief Review on He Ion Irradiation Research of Steel and Iron-Based Alloys in Nuclear Power Plants[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 529-551.
Add to citation manager EndNote|Ris|BibTeX
Fig. 4 a Structure of a He4V cluster and a SIA. b He and defect distributions for the case of 125 He atoms. c He and defect distributions after inserting 250 He at 0.6 ns. The insets in b and c are the detailed arrangements of a He-SIA cluster and a He cluster-SIA loop complex, respectively [21]
Fig. 6 Bright field kinematical micrographs of the He-implanted plates with 1000 appm in grain interior in 316L austenitic stainless steel: a as implanted (focal image), b annealed at 650 °C (under-focal image), c annealed at 750 °C (under-focal image), d annealed at 850 °C (under-focal image) and, e annealed at 900 °C (under-focal image), f annealed at 1000 °C grain interior (under-focal image) [69]
Fig. 8 TEM micrographs of the He-implanted sample following thermal treatment of 750 °C for 100 h of low magnification a; and higher magnification b [78]. The images were recorded in under focus conditions, with a defocus of ~ − 1000 nm
Steel | Mean size (nm) | Number density (m−3) | Swelling (%) |
---|---|---|---|
9Cr-1MoVNb | 9 | \(3\times {10}^{21}\) | 0.17 |
9Cr-1MoVNb-2 N | 5 | \(9\times {10}^{21}\) | 0.15 |
9Cr-2WVTa-A | 3 | \(1\times {10}^{21}\) | < 0.002 |
9Cr-2WVTa-2Ni-A | 3 | \(3\times {10}^{21}\) | < 0.006 |
9Cr-2WVTa-B | 9 | \(1\times {10}^{21}\) | 0.05 |
9Cr-2WVTa-2Ni-B | 4 | \(3\times {10}^{21}\) | 0.02 |
Table 1 Summary of cavities formed during irradiation [89]
Steel | Mean size (nm) | Number density (m−3) | Swelling (%) |
---|---|---|---|
9Cr-1MoVNb | 9 | \(3\times {10}^{21}\) | 0.17 |
9Cr-1MoVNb-2 N | 5 | \(9\times {10}^{21}\) | 0.15 |
9Cr-2WVTa-A | 3 | \(1\times {10}^{21}\) | < 0.002 |
9Cr-2WVTa-2Ni-A | 3 | \(3\times {10}^{21}\) | < 0.006 |
9Cr-2WVTa-B | 9 | \(1\times {10}^{21}\) | 0.05 |
9Cr-2WVTa-2Ni-B | 4 | \(3\times {10}^{21}\) | 0.02 |
Fig. 11 Typical swelling versus dpa curves for standard 316 AuSS (316SS), a swelling-resistant AuSS (PCA), and various ferritic-martensitic steels (HT9, 9C-1Mo, and 21/4C-1Mo) [19]
Fig. 12 CRSS (critical resolved shear stress) for edge dislocation to release from void and helium bubbles with different He/V ratios, both with different sizes, at temperature of 10 K and strain rate of 108/s [100]
Fig. 13 CRSS (critical resolved shear stress) for edge dislocation to release from 2 nm helium bubbles with different He/V ratios and 2 nm void at different temperatures and same strain rate [100]
Fig. 16 a Intergranular fracture surface induced by the tritium exposure treatment [117]; b porous structure observed on intergranular fractured facets of “in-beam” ruptured titanium modified (DIN 1.4970) cold work (CW) [119]
Fig. 17 Ratio of intergranular (IG) fracture surface by SSRT test a and He concentration b as function of radiation dose in PWR and fast breeder reactors (FBR) [134]
Fig. 18 a Comparison of radiation depth dependent He bubble density (scattered data point) distributions in irradiated 49 nm, 96 nm Fe films and bulk Fe. b Evolution of indentation hardness (as-deposited, irradiated, hardness change) as a function of d−1/2, where d stands for average grain size [158]
Fig. 21 Effect of initial sink strength on the radiation hardening of steels following fission neutron irradiation near 300 °C to damage levels of 1.5-78 displacements per atom (dpa) [144]
Fig. 22 Effect of sink strength on the volumetric void swelling of ion-irradiated (4-MeV Ni and 200-400-keV He) and fission neutron-irradiated Fe-Cr-Ni austenitic alloys [144]
Fig. 23 Energy barrier for the upcoming interstitial He in bcc Fe to enter the Ce (blue circles) cage to join the encapsulated He (red, gray and blue circles represent He, Fe and Ce respectively) [154]
Fig. 25 Optical micrographs of SLMed 304L stainless steel: a columnar grains, and b equiaxed grains. Bright field TEM images of c cellular sub-grain structures with dislocation tangles as the cell wall, d δ-ferrite, and e σ phase identified by EDS chemical composition [178]
Fig. 26 TEM images of irradiated SLM 316L SS: a cellular sub-grain structures, b nano-inclusions. c Schematic diagram of the effects of sub-grain boundaries and inclusions to radiation defects and He bubbles [188]
Fig. 27 Effects of grain size and oxide inclusions on the sink strengths in the as-built laser powder bed fusion (LPBF), the solution-annealed LPBF, and the rolled 304L stainless steel [189]
Fig. 28 Number density and size of helium bubbles in four samples of comparison S1 (As-built, implanted), S2 (As-built, implanted, PIA at 600 °C for 1 h), S3 (As-built, implanted, PIA at 600 °C for 1 h) and S4 (Solution-annealed, im-planted, PIA at 600 °C for 1 h) [190]
[1] |
D.J. Hill, Nat. Mater. 7, 680 (2008)
DOI |
[2] |
S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2013)
DOI URL |
[3] |
O. El-Atwani, E. Esquivel, M. Efe, E. Aydogan, Y.Q. Wang, E. Martinez, S.A. Maloy, Acta Mater. 149, 206 (2018)
DOI URL |
[4] |
Y. Chen, K.Y. Yu, Y. Liu, S. Shao, H. Wang, M.A. Kirk, J. Wang, X. Zhang, Nat. Commun. 6, 7036 (2015)
DOI PMID |
[5] |
S.H. Li, J.T. Li, W.Z. Han, Materials (Basel). 12, 1036 (2019)
DOI URL |
[6] |
S. Mahajan, B.L. Eyre, Acta Mater. 122, 259 (2017)
DOI URL |
[7] |
H. Trinkaus, B.N. Singh, J. Nucl. Mater. 323, 229 (2003)
DOI URL |
[8] |
P.D. Edmondson, C.M. Parish, Y. Zhang, A. Hallén, M.K. Miller, Scr. Mater. 65, 731 (2011)
DOI URL |
[9] |
S.R. Soria, A. Tolley, E.A. Sánchez, J. Nucl. Mater. 467, 357 (2015)
DOI URL |
[10] | K. Yutani, H. Kishimoto, R. Kasada, A. Kimura, J. Nucl. Mater. 367-370A, 423 (2007) |
[11] |
G.M. Bond, D.J. Mazey, M.B. Lewis, Nucl. Instrum Methods Phys. Res. 209-210, 381 (1983)
DOI URL |
[12] |
H. Ullmaier, J. Nucl. Mater. 133-134, 100 (1985)
DOI URL |
[13] |
S. Nogami, A. Hasegawa, T. Tanno, K. Imasaki, K. Abe, J. Nucl. Sci. Technol. 48, 130 (2011)
DOI URL |
[14] |
E. Lu, X. Cao, S. Jin, P. Zhang, C. Zhang, J. Yang, Y. Wu, L. Guo, B. Wang, J. Nucl. Mater. 458, 240 (2015)
DOI URL |
[15] | J. Qiu, Y. Xin, X. Ju, L.P. Guo, B.Y. Wang, Y.R. Zhong, Q.Y. Huang, Y.C. Wu, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 267, 3162 (2009) |
[16] |
K. Ono, K. Arakawa, K. Hojou, J. Nucl. Mater. 307-311, 1507 (2002)
DOI URL |
[17] | S.K.T.P.J. Goodhew,Proc. Roy. Soc. Lond. A 377, 151 (1981) |
[18] |
E. Getto, Z. Jiao, A.M. Monterrosa, K. Sun, G.S. Was, J. Nucl. Mater. 462, 458 (2015)
DOI URL |
[19] | Y. Dai, G.R. Odette, T. Yamamoto, The effects of helium in irradiated structural alloys. Compr. Nucl. Mater. (2012). https://doi.org/10.1016/B978-0-08-056033-5.00006-9 |
[20] |
N. Gao, H. Van Swygenhoven, M. Victoria, J. Chen, J. Phys. Condens. Matter. 23, 442201 (2011)
DOI URL |
[21] | L. Yang, H.Q. Deng, F. Gao, H.L. Heinisch, R.J. Kurtz, S.Y. Hu, Y.L. Li, X.T. Zu, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 303, 68 (2013) |
[22] |
X. Gai, T. Lazauskas, R. Smith, S.D. Kenny, J. Nucl. Mater. 462, 382 (2015)
DOI URL |
[23] |
X.C. Li, X. Shu, P. Tao, Y. Yu, G.J. Niu, Y. Xu, F. Gao, G.N. Luo, J. Nucl. Mater. 455, 544 (2014)
DOI URL |
[24] | K.O.E. Henriksson, K. Nordlund, J. Keinonen, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 244, 377 (2006) |
[25] |
K. Morishita, R. Sugano, B.D. Wirth, J. Nucl. Mater. 323, 243 (2003)
DOI URL |
[26] |
N. Gao, M. Victoria, J. Chen, H. Van Swygenhoven, J. Phys. Condens. Matter. 23, 245403 (2011)
DOI URL |
[27] |
W. Xiao, X. Zhang, W.T. Geng, G. Lu, J. Phys. Condens. Matter. 26, 255401 (2014)
DOI URL |
[28] |
H. Trinkaus, Radiat. Eff. 78, 189 (1983)
DOI URL |
[29] |
D.E. Rimmer, A.H. Cottrell, Philos. Mag. 2, 1345 (1957)
DOI URL |
[30] | T. Seletskaia, Y. Osetsky, R.E. Stoller, G.M. Stocks, Phys. Rev. Lett. 94, 1 (2005) |
[31] | C.S. Becquart, C. Domain, Phys. Rev. Lett. 97, 1 (2006) |
[32] | M. Samaras, Mater. Today 12, 46 (2009) |
[33] | J. Wang, L.L. Niu, X. Shu, Y. Zhang, Nucl. Fusion 55, 92003 (2015) |
[34] | S.H. Guo, B.E. Zhu, W.C. Liu, Z.Y. Pan, Y.X. Wang, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 267, 3278 (2009) |
[35] | C.C. Fu, F. Willaime, Phys. Rev.-B Condens. Matter. Mater. Phys. 72, 1 (2005) |
[36] |
H.L. Heinisch, F. Gao, R.J. Kurtz, E.A. Le, J. Nucl. Mater. 351, 141 (2006)
DOI URL |
[37] | H.Q. Deng, W.Y. Hu, F. Gao, H.L. Heinisch, S.Y. Hu, Y.L. Li, R.J. Kurtz, J. Nucl. Mater. 442, 667 (2013) |
[38] |
F. Gao, H. Heinisch, R.J. Kurtz, J. Nucl. Mater. 351, 133 (2006)
DOI URL |
[39] | J. Xu, C. Wang, W. Zhang, C. Ren, H. Gong, P. Huai, Nucl. Mater. Energy 7, 12 (2016) |
[40] |
J. Hetherly, E. Martinez, Z.F. Di, M. Nastasi, A. Caro, Scr. Mater. 66, 17 (2012)
DOI URL |
[41] | A. Bakaev, D. Terentyev, P. Grigorev, M. Posselt, E.E. Zhurkin, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 393, 150 (2017) |
[42] | H.L. Heinisch, F. Gao, R.J. Kurtz, J. Nucl. Mater. 367-370A, 311 (2007) |
[43] |
Y.X. Wang, Q. Xu, T. Yoshiie, Z.Y. Pan, J. Nucl. Mater. 376, 133 (2008)
DOI URL |
[44] | C. Domain, C.S. Becquart, J. Foct, Phys. Rev. B-Condens. Matter. Mater. Phys. 69, 1 (2004) |
[45] |
C.J. Ortiz, M.J. Caturla, C.C. Fu, F. Willaime, Phys. Rev. B-Condens. Matter. Mater. Phys. 75, 1 (2007)
DOI URL |
[46] |
C.J. Ortiz, M.J. Caturla, C.C. Fu, F. Willaime, J. Nucl. Mater. 386-388, 33 (2009)
DOI URL |
[47] | C.J. Ortiz, M.J. Caturla, C.C. Fu, F. Willaime, Phys. Rev. B-Condens. Matter. Mater. Phys. 80, 1 (2009) |
[48] | C.J. Först, J. Slycke, K.J. Van Vliet, S. Yip, Phys. Rev. Lett. 96, 1 (2006) |
[49] | F. Wang, W. Lai, R. Li, B. He, S. Li, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 393, 88 (2017) |
[50] | F. Gao, H.L. Heinisch, R.J. Kurtz, J. Nucl. Mater. 367–370 A, 446 (2007) |
[51] |
M. Li, Q. Hou, J. Cui, M. Qiu, A. Yang, M. Zhou, J. Nucl. Mater. 555, 153157 (2021)
DOI URL |
[52] |
L. Ji, L. Liu, Z. Xu, Y. Song, T. Jin, R. Li, F. Fang, Nanotechnol. Precis. Eng. 3, 81 (2020)
DOI URL |
[53] |
R.J. Kurtz, H.L. Heinisch, J. Nucl. Mater. 329-333, 1199 (2004)
DOI URL |
[54] | X. He, D. Terentyev, Y. Lin, W. Yang, J. Nucl. Mater. 442, 660 (2013) |
[55] | P.L. Lane, P.J. Goodhew, Philos. Mag. A Phys. Condens. Matter. Struct. Defects Mech. Prop. 48, 965 (1983) |
[56] |
L. Zhang, C.C. Fu, G.H. Lu, Phys. Rev. B-Condens. Matter. Mater. Phys. 87, 1 (2013)
DOI URL |
[57] |
T. Seletskaia, Y.N. Osetsky, R.E. Stoller, G.M. Stocks, J. Nucl. Mater. 351, 109 (2006)
DOI URL |
[58] |
F. Gao, H. Deng, H.L. Heinisch, R.J. Kurtz, J. Nucl. Mater. 418, 115 (2011)
DOI URL |
[59] |
D.M. Stewart, Y.N. Osetsky, R.E. Stoller, S.I. Golubov, T. Seletskaia, P.J. Kamenski, Philos. Mag. 90, 935 (2010)
DOI URL |
[60] |
P.H. Chen, X.C. Lai, K.Z. Liu, X.L. Wang, B. Bai, B.Y. Ao, Y. Long, J. Nucl. Mater. 405, 156 (2010)
DOI URL |
[61] |
H. Xie, N. Gao, K. Xu, G.H. Lu, T. Yu, F. Yin, Acta Mater. 141, 10 (2017)
DOI URL |
[62] | J.H. Evans, J. Nucl. Mater. 76 & 77, 228 (1978) |
[63] |
L. Li, L. Peng, J. Shi, W. Jiang, Comput. Mater. Sci. 197, 110601 (2021)
DOI URL |
[64] |
F. Carsughi, H. Ullmaier, H. Trinkaus, W. Kesternich, V. Zell, J. Nucl. Mater. 212-215, 336 (1994)
DOI URL |
[65] |
J. Chen, S. Romanzetti, W.F. Sommer, H. Ullmaier, J. Nucl. Mater. 304, 1 (2002)
DOI URL |
[66] |
S.K. Tyler, P.J. Goodhew, J. Nucl. Mater. 92, 201 (1980)
DOI URL |
[67] |
H. Trinkaus, Scr. Metall. 23, 1773 (1989)
DOI URL |
[68] |
B.N. Singh, H. Trinkaus, J. Nucl. Mater. 186, 153 (1992)
DOI URL |
[69] |
I. Villacampa, J.C. Chen, P. Spätig, H.P. Seifert, F. Duval, J. Nucl. Mater. 500, 389 (2018)
DOI URL |
[70] |
A.M. Ovcharenko, I.I. Chernov, J. Nucl. Mater. 528, 151824 (2020)
DOI URL |
[71] |
J.R. Jeffries, M.A. Wall, K.T. Moore, A.J. Schwartz, J. Nucl. Mater. 410, 84 (2011)
DOI URL |
[72] |
H. Schroeder, P.F.P. Fichtner, J. Nucl. Mater. 179-181, 1007 (1991)
DOI URL |
[73] |
V.N. Chernikov, H. Trinkaus, H. Ullmaier, J. Nucl. Mater. 250, 103 (1997)
DOI URL |
[74] | Q. Shen, W. Zhou, G. Ran, R. Li, Q. Feng, N. Li, evolution of helium bubbles and discs in Irradiated 6H-SIC during post-implantation annealing. Materials (Basel). (2017). https://doi.org/10.3390/ma10020101 |
[75] | L. Wang, X.P. Wang, L.F. Zhang, Y.X. Gao, R. Liu, R. Gao, Y. Jiang, T. Hao, T. Zhang, Q.F. Fang, C.S. Liu, Nucl. Mater. Energy 21, 100710 (2019) |
[76] |
R.E. Stoller, G.R. Odette, J. Nucl. Mater. 131, 118 (1985)
DOI URL |
[77] |
I.R. Brearley, D.A. MacInnes, J. Nucl. Mater. 95, 239 (1980)
DOI URL |
[78] |
P.D. Edmondson, C.M. Parish, Q. Li, M.K. Miller, J. Nucl. Mater. 445, 84 (2014)
DOI URL |
[79] |
G. Lei, R. Xie, H. Huang, R. Liu, Q. Huang, J. Li, Y. Zhou, C. Li, Q. Lei, Q. Deng, Y. Wang, C. Wang, W. Zhang, L. Yan, M. Tang, J. Alloys Compd. 746, 153 (2018)
DOI URL |
[80] |
D. Brimbal, E. Meslin, J. Henry, B. Décamps, A. Barbu, Acta Mater. 61, 4757 (2013)
DOI URL |
[81] |
A. Bhattacharya, E. Meslin, J. Henry, B. Décamps, A. Barbu, Mater. Res. Lett. 6, 372 (2018)
DOI URL |
[82] |
N.H. Packan, J. Nucl. Mater. 104, 1029 (1981)
DOI URL |
[83] | A. Bhattacharya, S.J. Zinkle, Cavity swelling in irradiated materials. Compr. Nucl. Mater. (Second Ed) 1, 406 (2020). https://doi.org/10.1016/B978-0-12-803581-8.11599-1 |
[84] |
Y. Katoh, Y. Kohno, A. Kohyama, J. Nucl. Mater. 205, 354 (1993)
DOI URL |
[85] |
Y. Katoh, R.E. Stoller, Y. Kohno, A. Kohyama, J. Nucl. Mater. 210, 290 (1994)
DOI URL |
[86] |
R.E. Stoller, J. Nucl. Mater. 174, 289 (1990)
DOI URL |
[87] |
F.I. Allen, P. Hosemann, M. Balooch, Scr. Mater. 178, 256 (2020)
DOI URL |
[88] |
L. Fave, M.A. Pouchon, M. Döbeli, M. Schulte-Borchers, A. Kimura, J. Nucl. Mater. 445, 235 (2014)
DOI URL |
[89] |
N. Hashimoto, R.L. Klueh, J. Nucl. Mater. 305, 153 (2002)
DOI URL |
[90] |
L. Peng, Q. Huang, S. Ohnuki, C. Yu, Fusion Eng. Des. 86, 2624 (2011)
DOI URL |
[91] | J. Gao, H. Huang, J. Liu, Q. Lei, C. Wang, Z. Han, G. Yang, Y. Li, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 450, 108 (2019) |
[92] |
M. Lambrecht, E. Meslin, L. Malerba, M. Hernández-Mayoral, F. Bergner, P. Pareige, B. Radiguet, A. Almazouzi, J. Nucl. Mater. 406, 84 (2010)
DOI URL |
[93] |
H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, A. Kimura, J. Nucl. Mater. 455, 349 (2014)
DOI URL |
[94] |
S.J. Zhang, D.H. Li, H.C. Chen, G.H. Lei, H.F. Huang, W. Zhang, C.B. Wang, L. Yan, D.J. Fu, M. Tang, J. Nucl. Mater. 489, 180 (2017)
DOI URL |
[95] |
V. Muthukumaran, V. Selladurai, S. Nandhakumar, M. Senthilkumar, Mater. Des. 31, 2813 (2010)
DOI URL |
[96] |
J.D. Hunn, E.H. Lee, T.S. Byun, L.K. Mansur, J. Nucl. Mater. 282, 131 (2000)
DOI URL |
[97] | G.S. by G. S. WAS (Was, in ed.ed. Springer New York, New York, NY, 2017), pp. 3-76 |
[98] |
P. Jung, J. Henry, J. Chen, J.C. Brachet, J. Nucl. Mater. 318, 241 (2003)
DOI URL |
[99] |
I. Ioka, Y. Ishijima, K. Usami, N. Sakuraba, Y. Kato, K. Kiuchi, J. Nucl. Mater. 417, 887 (2011)
DOI URL |
[100] | L. Jia, X. He, S. Wu, D. Wang, H. Cao, Y. Dou, W. Yang, Mater. Sci. Forum 944 MSF, 378 (2018) |
[101] |
A.Y. Hamid, J. Sun, H. Zhang, A.S. Jadon, T. Stirner, Comput. Mater. Sci. 163, 141 (2019)
DOI URL |
[102] | R. Schäublin, Y.L. Chiu, in J. Nucl. Mater. (J. Nucl. Mater, 2007), pp. 152-160 |
[103] |
S.M. Hafez Haghighat, R. Schaublin, Philos. Mag. 90, 1075 (2010)
DOI URL |
[104] | S.M.H. Haghighat, R. Schaeublin, J. Comput. Mater. Des. 14, 191 (2007) |
[105] |
L. Peng, Y. Dai, J. Nucl. Mater. 417, 996 (2011)
DOI URL |
[106] | M. Roldán, P. Fernández, J. Rams, F.J. Sánchez, A. Gómez-Herrero,Micromachines 9, 633 (2018) |
[107] |
K. Farrell, T.S. Byun, J. Nucl. Mater. 318, 274 (2003)
DOI URL |
[108] |
Z. Tong, Y. Dai, J. Nucl. Mater. 398, 43 (2010)
DOI URL |
[109] |
H. Schroeder, P. Batfalsky, J. Nucl. Mater. 117, 287 (1983)
DOI URL |
[110] |
H. Trinkaus, J. Nucl. Mater. 118, 39 (1983)
DOI URL |
[111] |
R.L. Klueh, M.A. Sokolov, K. Shiba, Y. Miwa, J.P. Robertson, J. Nucl. Mater. 283-287, 478 (2000)
DOI URL |
[112] | M.R. Gilbert, S.L. Dudarev, D. Nguyen-Manh, S. Zheng, L.W. Packer, J.C. Sublet,J. Nucl. Mater. 442, S755 (2013) |
[113] | K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Mater. Sci. Eng. A 625, 221 (2015) |
[114] |
W.Z. Han, M.S. Ding, Z.W. Shan, Scr. Mater. 147, 1 (2018)
DOI URL |
[115] |
A.N. Hughes, J.R. Caley, J. Nucl. Mater. 10, 60 (1963)
DOI URL |
[116] | R.S. Barnes,Nature 206, 1307 (1965) |
[117] |
S.H. Goods, Scr. Metall. 20, 565 (1986)
DOI URL |
[118] | H. Ullmaier, Nucl. Fusion 24, 1039 (1984) |
[119] |
N. Yamamoto, T. Chuto, Y. Murase, J. Nagakawa, J. Nucl. Mater. 329-333, 993 (2004)
DOI URL |
[120] |
J. Hure, A. Courcelle, I. Turque, J. Nucl. Mater. 565, 153732 (2022)
DOI URL |
[121] |
H. Trinkaus, H. Ullmaier, J. Nucl. Mater. 212-215, 303 (1994)
DOI URL |
[122] |
H. Trinkaus, J. Nucl. Mater. 133-134, 105 (1985)
DOI URL |
[123] |
H. Trinkaus, H. Ullmaier, J. Nucl. Mater. 155-157, 148 (1988)
DOI URL |
[124] | G.S. Was, P.L. Andresen Irradiation assisted corrosion and stress corrosion cracking (IAC/IASCC) in nuclear reactor systems and components. Nucl. Corros. Sci. Eng. (2012). pp. 131-185 |
[125] |
Z. Jiao, G.S. Was, J. Nucl. Mater. 382, 203 (2008)
DOI URL |
[126] |
K.J. Stephenson, G.S. Was, J. Nucl. Mater. 444, 331 (2014)
DOI URL |
[127] |
G.S. Was, J.T. Busby, Philos. Mag. 85, 443 (2005)
DOI URL |
[128] |
Z. Jiao, G. Was, T. Miura, K. Fukuya, J. Nucl. Mater. 452, 328 (2014)
DOI URL |
[129] |
G.S. Was, S.M. Bruemmer, J. Nucl. Mater. 216, 326 (1994)
DOI URL |
[130] |
M. Wang, M. Song, C.R. Lear, G.S. Was, J. Nucl. Mater. 515, 52 (2019)
DOI |
[131] |
E. Paccou, B. Tanguy, M. Legros, J. Nucl. Mater. 528, 151880 (2020)
DOI URL |
[132] | O. Raquet, E. Herms, F. Vaillant, T. Couvant, J.M. Boursier, Corros. Issues Light Water React. Stress Corros. Crack. 304, 76 (2007) |
[133] |
D.J. Edwards, F.A. Garner, S.M. Bruemmer, P. Efsing, J. Nucl. Mater. 384, 249 (2009)
DOI URL |
[134] | I. Villacampa Roses, Helium effects on irradiation assisted stress corrosion cracking susceptibility of 316L austenitic stainless steel. EPFL (2018). https://doi.org/10.5075/epfl-thesis-8268 |
[135] |
I. Villacampa, J.C. Chen, P. Spätig, H.P. Seifert, F. Duval, Corros. Eng. Sci. Technol. 52, 567 (2017)
DOI URL |
[136] |
Y. Chen, A.S. Rao, B. Alexandreanu, K. Natesan, Nucl. Eng. Des. 269, 38 (2014)
DOI URL |
[137] | X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga,Science 327, 1631 (2010) |
[138] |
E. Hug, R. Prasath Babu, I. Monnet, A. Etienne, F. Moisy, V. Pralong, N. Enikeev, M. Abramova, X. Sauvage, B. Radiguet, Appl. Surf. Sci. 392, 1026 (2017)
DOI URL |
[139] | P.B.R. Rajan, I. Monnet, E. Hug, A. Etienne, N. Enikeev, C. Keller, X. Sauvage, R. Valiev, B. Radiguet, I.O.P. Conf, Ser. Mater. Sci. Eng. 63, 6 (2014) |
[140] |
B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, R. Valiev, J. Mater. Sci. 43, 7338 (2008)
DOI URL |
[141] |
R. Schäublin, A. Ramar, N. Baluc, V. de Castro, M.A. Monge, T. Leguey, N. Schmid, C. Bonjour, J. Nucl. Mater. 351, 247 (2006)
DOI URL |
[142] |
M.L. Lescoat, J. Ribis, A. Gentils, O. Kaïtasov, Y. De Carlan, A. Legris, J. Nucl. Mater. 428, 176 (2012)
DOI URL |
[143] | A.I. Ryazanov, O.K. Chugunov, S.M. Ivanov, S.T. Latushkin, R. Lindau, A. Möslang, A.A. Nikitina, K.E. Prikhodko, E.V. Semenov, V.N. Unezhev, P.V. Vladimirov,J. Nucl. Mater. 442, S153 (2013) |
[144] |
S.J. Zinkle, L.L. Snead, Annu. Rev. Mater. Res. 44, 241 (2014)
DOI URL |
[145] | G. Ackland,Science 327, 1587 (2010) |
[146] |
X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, M. Nastasi, Prog. Mater. Sci. 96, 217 (2018)
DOI URL |
[147] |
Q. Li, C.M. Parish, K.A. Powers, M.K. Miller, J. Nucl. Mater. 445, 165 (2014)
DOI URL |
[148] |
G.R. Odette, P. Miao, D.J. Edwards, T. Yamamoto, R.J. Kurtz, H. Tanigawa, J. Nucl. Mater. 417, 1001 (2011)
DOI URL |
[149] |
P.D. Edmondson, C.M. Parish, Y. Zhang, A. Hallén, M.K. Miller, J. Nucl. Mater. 434, 210 (2013)
DOI URL |
[150] |
L. Wan, R. Zhang, X. Ye, T. Gao, Comput. Mater. Sci. 205, 111213 (2022)
DOI URL |
[151] |
F. Ding, L. Zhou, L. Zhao, X. Dou, K. Xiao, J. Song, J. Du, G. Jiang, J. Nucl. Mater. 565, 153720 (2022)
DOI URL |
[152] | W. Hao, W.T. Geng, Nucl. Instru. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269, 1428 (2011) |
[153] |
I. Ipatova, G. Greaves, S. Pacheco-Gutiérrez, S.C. Middleburgh, M.J.D. Rushton, E. Jimenez-Melero, J. Nucl. Mater. 550, 152910 (2021)
DOI URL |
[154] | W. Hao, W.T. Geng, Nucl. Instru. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 280, 22 (2012) |
[155] |
Q. Wang, X. Kong, Y. Yu, H. Han, G. Sang, G. Zhang, Y. Yi, T. Gao, J. Nucl. Mater. 551, 152955 (2021)
DOI URL |
[156] |
B.N. Singh, Philos. Mag. 28, 1409 (1973)
DOI URL |
[157] |
M. Wurmshuber, M. Balooch, X. Huang, P. Hosemann, D. Kiener, Scr. Mater. 213, 114641 (2022)
DOI URL |
[158] |
K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E.G. Fu, X. Zhang, J. Nucl. Mater. 425, 140 (2012)
DOI URL |
[159] |
H. Kurishita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, M. Kawai, N. Yoshida, J. Nucl. Mater. 377, 34 (2008)
DOI URL |
[160] |
W.B. Liu, J.H. Zhang, Y.Z. Ji, L.D. Xia, H.P. Liu, D. Yun, C.H. He, C. Zhang, Z.G. Yang, J. Nucl. Mater. 500, 213 (2018)
DOI URL |
[161] |
C. Sun, K.Y. Yu, J.H. Lee, Y. Liu, H. Wang, L. Shao, S.A. Maloy, K.T. Hartwig, X. Zhang, J. Nucl. Mater. 420, 235 (2012)
DOI URL |
[162] |
O. El-Atwani, J.E. Nathaniel, A.C. Leff, J.K. Baldwin, K. Hattar, M.L. Taheri, Mater. Res. Lett. 5, 195 (2017)
DOI URL |
[163] |
Z. Chen, L.L. Niu, Z. Wang, L. Tian, L. Kecskes, K. Zhu, Q. Wei, Acta Mater. 147, 100 (2018)
DOI URL |
[164] |
G.R. Odette, M.J. Alinger, B.D. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008)
DOI URL |
[165] |
Z.F. Wu, L.D. Xu, H.Q. Chen, Y.X. Liang, J.L. Du, Y.F. Wang, S.L. Zhang, X.C. Cai, B.R. Sun, J. Zhang, T.D. Shen, J. Wang, E.G. Fu, J. Nucl. Mater. 559, 153418 (2022)
DOI URL |
[166] |
V. Krsjak, T. Shen, J. Degmova, S. Sojak, E. Korpas, P. Noga, W. Egger, B. Li, V. Slugen, F.A. Garner, J. Mater. Sci. Technol. 105, 172 (2022)
DOI URL |
[167] |
L.K. Mansur, J. Nucl. Mater. 216, 97 (1994)
DOI URL |
[168] | G.S. by G. S. WAS (Was, in ed.ed. Springer New York, New York, NY, 2017), pp. 379-484 |
[169] |
D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, R.K. Nanstad, J. Nucl. Mater. 392, 353 (2009)
DOI URL |
[170] |
J. Henry, X. Averty, A. Alamo, J. Nucl. Mater. 417, 99 (2011)
DOI URL |
[171] |
K. Ma, B. Décamps, A. Fraczkiewicz, F. Prima, M. Loyer-Prost, Mater. Res. Lett. 8, 201 (2020)
DOI URL |
[172] |
O.M. Horst, D. Adler, P. Git, H. Wang, J. Streitberger, M. Holtkamp, N. Jöns, R.F. Singer, C. Körner, G. Eggeler, Mater. Des. 195, 108976 (2020)
DOI URL |
[173] |
K. Laha, S. Saroja, A. Moitra, R. Sandhya, MD. Mathew, T. Jayakumar, E.Rajendra Kumar (2013) J. Nucl. Mater. 439:41
DOI URL |
[174] |
A.A.F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, H. Tanigawa, J. Nucl. Mater. 455, 269 (2014)
DOI URL |
[175] |
K. Ono, H. Sasagawa, F. Kudo, M. Miyamoto, Y. Hidaka, J. Nucl. Mater. 417, 1026 (2011)
DOI URL |
[176] | S. Şahin, M. Übeyli, J.Fusion Energy 27, 271 (2008) |
[177] | R. Baldev, U.K. Kamachi Mudali, M. Vijayalakshmi, M.D. Mathew, A.K. Bhaduri, P. Chellapandi, S. Venugopal, C.S. Sundar, B.P.C. Rao, B. Venkataraman, Adv. Mater. Res. 794, 3 (2013) |
[178] |
J. Hou, W. Chen, Z. Chen, K. Zhang, A. Huang, J. Mater. Sci. Technol. 48, 63 (2020)
DOI URL |
[179] |
N. Yang, J. Yee, B. Zheng, K. Gaiser, T. Reynolds, L. Clemon, W.Y. Lu, J.M. Schoenung, E.J. Lavernia, J. Therm. Spray Technol. 26, 610 (2017)
DOI URL |
[180] |
Y. Zhong, L. Liu, S. Wikman, D. Cui, Z. Shen, J. Nucl. Mater. 470, 170 (2016)
DOI URL |
[181] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17, 63 (2018)
DOI URL |
[182] |
P. Guo, B. Zou, C. Huang, H. Gao, J. Mater. Process. Technol. 240, 12 (2017)
DOI URL |
[183] | X. Chen, J. Li, X. Cheng, H. Wang, Z. Huang, Mater. Sci. Eng. A 715, 307 (2018) |
[184] | M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, Z. Bojar, Mater. Sci. Eng. A 677, 1 (2016) |
[185] |
H.J. Kim, S.H. Jeon, S.T. Kim, I.S. Lee, Y.S. Park, K.T. Kim, Y.S. Kim, Corros. Sci. 87, 60 (2014)
DOI URL |
[186] |
C. Fu, J. Li, J. Bai, Y. Li, Q. Chen, G. Lei, J. Lin, Z. Zhu, Y. Meng, J. Nucl. Mater. 550, 152948 (2021)
DOI URL |
[187] |
Z. Sun, Y. Xu, F. Chen, L. Shen, X. Tang, L. Sun, M. Fan, P. Huang, Mater. Charact. 180, 111420 (2021)
DOI URL |
[188] |
X. Sun, F. Chen, H. Huang, J. Lin, X. Tang, Appl. Surf. Sci. 467-468, 1134 (2019)
DOI URL |
[189] |
J. Hou, B. Dai, Y. Li, J. Zhao, Z. Chen, D. Pan, Y. Zhu, K. Zhang, A. Huang, J. Nucl. Mater. 542, 152443 (2020)
DOI URL |
[190] | H. Liu, S. Min, M. Jiang, F. Chu, Y. Li, Z. Chen, K. Zhang, J. Hou, A. Huang, Acta Metall. Sin. -Engl. Lett. 35, 1509 (2022) |
[191] |
C. Fu, J. Li, J. Bai, Q. Lei, R. Liu, J. Lin, J. Nucl. Mater. 562, 153609 (2022)
DOI URL |
[192] | D. Xu, F. Chen, X. Tang, L. Shen, J. Jiang, Z. Sun, S. Li, Z. Geng, Int. J. Adv. Nucl. React. Des. Technol. 3, 74 (2021) |
[193] |
M. Song, M. Wang, X. Lou, R.B. Rebak, G.S. Was, J. Nucl. Mater. 513, 33 (2019)
DOI URL |
[1] | Hui Liu, Shiling Min, Menglei Jiang, Fuzhong Chu, Ying Li, Zhuoer Chen, Kai Zhang, Juan Hou, Aijun Huang. Helium Bubble Growth in He+ Ions Implanted 304L Stainless Steel Processed by Laser Powder Bed Fusion During Post-Irradiation Annealing at 600 °C [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1509-1518. |
[2] | Cunyun Hu, Hefei Huang, Zhenbo Zhu, Awen Liu, Yan Li. Effect of Post-irradiation Annealing on Microstructure Evolution and Hardening in GH3535 Alloy Irradiated by Au Ions [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1903-1911. |
[3] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[4] | Honglin Yan, Zhiming Zhang, Jianqiu Wang, Bright O. Okonkwo, En-Hou Han. Effects of MeV Fe Ions Irradiation on the Microstructure and Property of Nuclear Grade 304 Stainless Steel: Characterized by Positron Annihilation Spectroscopy, Transmission Electron Microscope and Nanoindentation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1695-1703. |
[5] | Shasha Zhang, Niels van Dijk, Sybrand van der Zwaag. A Review of Self-healing Metals: Fundamentals, Design Principles and Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1167-1179. |
[6] | Yue-Ling Guo, Li-Na Jia, Bin Kong, Yong-Lin Huang, Hu Zhang. Energy Density Dependence of Bonding Characteristics of Selective Laser-Melted Nb-Si-Based Alloy on Titanium Substrate [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 477-486. |
[7] | Li-Fang Zheng, Lu-Ning Wang, Zhao-Zhong Wang, Li Wang. Effects of γ-Ray Irradiation on the Fatigue Strength, Thermal Conductivities and Thermal Stabilities of the Glass Fibres/Epoxy Resins Composites [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 105-112. |
[8] | Ai-Bing Du, Wei Feng, Hai-Liang Ma, Tian Liang, Da-Qing Yuan, Ping Fan, Qiao-Li Zhang, Chen Huang. Effects of Titanium and Silicon on the Swelling Behavior of 15-15Ti Steels by Heavy-Ion Beam Irradiation [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1049-1054. |
[9] | Zhong-Cheng Zheng,Yan-Xia Yu,Wei-Ping Zhang,Zhen-Yu Shen,Feng-Feng Luo,Li-Ping Guo,Yao-Yao Ren,Rui Tang. Evolution of Dislocation Loops in AL-6XN Stainless Steels Irradiated by Hydrogen Ions [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(1): 89-96. |
[10] | Jing Zhang,Yong-Qin Chang,Zhi-Meng Guo,Ping-Ping Liu,Yi Long,Fa-Rong Wan. Microstructure and Nano-hardness of Pure Copper and ODS Copper Alloy under Au Ions Irradiation at Room Temperature [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(11): 1047-1052. |
[11] | Thankamma George, A. G. Kunjomana. 60Co Gamma Irradiation and Annealing Effects on Transport Properties of Antimony Telluride Platelets Grown by Physical Vapor Deposition [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 559-566. |
[12] | Mao-Hua Li, Yan-Qing Yang, Bin Huang, Xian Luo, Wei Zhang, Yan-Xia Chen, Ming Han, Ji-Gang Ru. In Situ HRTEM Observation of Electron-Irradiation-Induced Amorphization and Dissolution of the E (Al18Cr2Mg3) Phase in 7475 Al Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 147-151. |
[13] | Xiao-Yang Chen, Shu-Guang Zhang, Ming-Xu Xia, Jian-Guo Li. Phase Separation and Crystallization Induced by Electron Irradiation in Nanoscale Fe56.5Mn11Cr8.5Ni4Si10C10 Metallic Glass [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(11): 1332-1335. |
[14] | C. J. Ajayakumar, A. G. Kunjomana. Gamma Irradiation Effects in InBi0.8Te0.2 Crystals Grown by Horizontal Directional Freezing [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(10): 1205-1213. |
[15] | Deene Manikprabhu, K. Lingappa. Microwave Assisted Rapid Bio-based Synthesis of Gold Nanorods Using Pigment Produced by Streptomyces coelicolor klmp33 [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 613-617. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||