Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (2): 233-238.DOI: 10.1007/s40195-014-0044-4
• research-article • Previous Articles Next Articles
B. R. Shendy1, M. N. Yoozbashi2, B. Avishan3, S. Yazdani1()
Received:
2013-09-09
Revised:
2013-10-17
Online:
2014-04-25
Published:
2014-05-07
B. R. Shendy, M. N. Yoozbashi, B. Avishan, S. Yazdani. An Investigation on Rotating Bending Fatigue Behavior of Nanostructured Low-Temperature Bainitic Steel[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 233-238.
Add to citation manager EndNote|Ris|BibTeX
Temperature (°C) | Bainitic ferrite plate thickness (nm) | Volume fraction of high carbon retained austenite (vol%) | Carbon content in austenite (wt%) |
---|---|---|---|
300 | 110 | 27 | 1.7 |
250 | 90 | 21 | 1.4 |
200 | 65 | 15 | 1.2 |
Table 1 Bainitic ferrite plate thickness measured by TEM, volume fraction of retained austenite and carbon content in retained austenite of the samples austempered at different transformation temperatures
Temperature (°C) | Bainitic ferrite plate thickness (nm) | Volume fraction of high carbon retained austenite (vol%) | Carbon content in austenite (wt%) |
---|---|---|---|
300 | 110 | 27 | 1.7 |
250 | 90 | 21 | 1.4 |
200 | 65 | 15 | 1.2 |
Temperature (°C) | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
300 | 961 | 1,602 | 13.6 |
250 | 1,138 | 1,801 | 10.5 |
200 | 1,288 | 1,963 | 7.6 |
Table 2 Mechanical properties of the samples austempered at different transformation temperatures
Temperature (°C) | YS (MPa) | UTS (MPa) | EL (%) |
---|---|---|---|
300 | 961 | 1,602 | 13.6 |
250 | 1,138 | 1,801 | 10.5 |
200 | 1,288 | 1,963 | 7.6 |
Fig. 4 Typical SEM micrographs of crack initiation regions on fracture surfaces of different samples: a transformed at 300 °C, maximum stress 900 MPa and 400,465 cyc to failure; b transformed at 250 °C, maximum stress 980 MPa and 537,817 cyc to failure; c transformed at 200 °C, maximum stress 1,030 MPa and 513,000 cyc to failure
Fig. 5 Typical SEM micrographs of crack propagation region in fatigue fracture of different samples: a transformed at 300 °C, maximum stress 900 MPa and 400,465 cyc to failure; b transformed at 250 °C, maximum stress 980 MPa and 537,817 cyc to failure; c transformed at 200 °C, maximum stress 1,030 MPa and 513,000 to failure
Fig. 6 Typical SEM micrographs of final fatigue fracture surfaces of different samples: a transformed at 300 °C, maximum stress 900 MPa and 400,465 cyc to failure; b transformed at 250 °C, maximum stress 980 MPa and 537,817 cyc to failure; c transformed at 200 °C, maximum stress 1,030 MPa and 513,000 cyc to failure
Fig. 7 Typical SEM micrographs showing secondary cracks on fracture surfaces of different samples: a transformed at 300 °C, maximum stress 900 MPa and 400,465 cyc to failure; b transformed at 250 °C, maximum stress 980 MPa and 537,817 cyc to failure; c transformed at 200 °C, maximum stress 1,030 MPa and 513,000 cyc to failure
[1] | F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol. 18, 279(2002)10.1179/026708301225000725 |
[2] | C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43, 1238(2003)10.2355/isijinternational.43.1238 |
[3] | C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, J. Phys. Colloq. 112, 1238(2003) |
[4] | F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8, 251(2004)10.1016/j.cossms.2004.09.005 |
[5] | C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 500–501, 495(2005) |
[6] | H.K.D.H.BhadeshiainProceedings of the Solid-Solid Phase Transformations In Inorganic Materials, Arizona, 2005, ed. J. Howe, D. Laughlin, J. Lee, U. Dahmen, W. Soffa, pp. 469–484 |
[7] | H.K.D.H. Bhadeshia, Mater. Sci. Forum 500–501, 63(2005)10.4028/www.scientific.net/MSF.500-501.63 |
[8] | C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43, 1821(2003)10.2355/isijinternational.43.1821 |
[9] | M.N. Yoozbashi, S. Yazdani, Mater. Sci. Eng. A 527, 3200(2010)10.1016/j.msea.2010.01.080 |
[10] | M.N. Yoozbashi, S. Yazdani, T.S. Wang, Mater. Des. 32, 3248(2011)10.1016/j.matdes.2011.02.031 |
[11] | M.J. Peet, P. Hill, M. Rawson, S. Wood, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 27, 119(2011)10.1179/026708310X12688283410244 |
[12] | J. Yang, T.S. Wang, B. Zhang, F.C. Zhang, Scr. Mater. 66, 363(2012)10.1016/j.scriptamat.2011.11.033 |
[13] | L.C. Chang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 11, 874(1995)10.1179/mst.1995.11.9.874 |
[14] | DIN 50 113,Rotating Bar Bending Fatigue Test,IN 50 113, Rotating Bar Bending Fatigue Test, German Standards Organization, 1982 |
[15] | ASTM E975-84, Standard Practice for X-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation(Annual Book of ASTM Standards, Philadelphia, 1990), pp. 753–757 |
[16] | B.D.CullityS.R.Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New York, 2001) |
[17] | M.F.GarwoodH.H.ZurburgM.A.Erickson, Interpretation of Tests and Correlation with Service(ASM, Philadelphia, 1951) |
[1] | Rendong Liu, Zhiyuan Liang, Li Lin, Mingxin Huang. Dislocation Source and Pile-up in a Twinning-induced Plasticity Steel at High-Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 169-173. |
[2] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[3] | Lu An, Yan-Tao Sun, Shan-Ping Lu, Zhen-Bo Wang. Enhanced Fatigue Property of Welded S355J2W Steel by Forming a Gradient Nanostructured Surface Layer [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1252-1258. |
[4] | Shasha Zhang, Niels van Dijk, Sybrand van der Zwaag. A Review of Self-healing Metals: Fundamentals, Design Principles and Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1167-1179. |
[5] | Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 799-807. |
[6] | Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550. |
[7] | Xiao-An Hu, Gao-Le Zhao, Yun Jiang, Xian-Feng Ma, Fen-Cheng Liu, Jia Huang, Cheng-Li Dong. Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 514-527. |
[8] | Yong-Han Li, Zhong-Hua Jiang, Zhen-Dan Yang, Jue-Shun Zhu. Effect of Indirect Transformation of Retained Austenite During Tempering on the Charpy Impact Toughness of a Low-Alloy Cr-Mo-V Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1346-1358. |
[9] | Jian Zhang, Yuan-Yuan Guo, Mai Zhang, Zhen-Yu Yang, Yu-Shi Luo. Low-Cycle Fatigue and Creep-Fatigue Behaviors of a Second-Generation Nickel-Based Single-Crystal Superalloy at 760 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1423-1432. |
[10] | Zhi-Chao Ma, Xiao-Xi Ma, Hong-Wei Zhao, Fu Zhang, Li-Ming Zhou, Lu-Quan Ren. Novel Crystallization Behaviors of Zr-Based Metallic Glass Under Thermo-Mechanical Coupled Fatigue Loading Condition [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 797-802. |
[11] | Tao Sun, Yan Liu, Shu-Jun Li, Jian-Ping Li. Effect of HIP Treatment on Fatigue Notch Sensitivity of Ti-6Al-4V Alloy Fabricated by Electron Beam Melting [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 869-875. |
[12] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. |
[13] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[14] | Feng-Mei Bai, Hong-Wei Zhou, Xiang-Hua Liu, Meng Song, Ya-Xin Sun, Hai-Long Yi, Zhen-Yi Huang. Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1346-1354. |
[15] | Yang Zhao, Wen-Ting Zhu, Shu Yan, Li-Qing Chen. Effect of Microstructure on Tensile Behavior and Mechanical Stability of Retained Austenite in a Cold-Rolled Al-Containing TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1237-1243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||