Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (6): 1043-1054.DOI: 10.1007/s40195-021-01341-y
Ashutosh Sahu1(), Ram Sajeevan Maurya2, Lavish Kumar Singh2, Tapas Laha3
Received:
2021-05-02
Revised:
2021-08-26
Accepted:
2021-09-05
Online:
2022-06-10
Published:
2022-06-15
Contact:
Ashutosh Sahu
About author:
Ashutosh Sahu, ashutosh.sahu@sharda.ac.inAshutosh Sahu, Ram Sajeevan Maurya, Lavish Kumar Singh, Tapas Laha. Analyzing the Effects of Milling and Sintering Parameters on Crystalline Phase Evolution and Mechanical Properties of Al86Ni8Y6 and Al86Ni6Y4.5Co2La1.5 Amorphous Ribbons[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1043-1054.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 SAED pattern and HRTEM images of a, c Al86Ni8Y6, b, d Al86Ni6Y4.5Co2La1.5 melt spun ribbons and e, g Al86Ni8Y6, f, h Al86Ni6Y4.5Co2La1.5 5 h milled ribbon particles
Fig. 3 DSC thermograms of Al86Ni8Y6 and Al86Ni6Y4.5Co2La1.5 a, b as-cast ribbons c, d milled ribbon particles, revealing various stages of phase transition
Composition | Sample | Heating rate (°C/min) | Tx1 (ºC) | Tx2 (ºC) | Tx3 (ºC) |
---|---|---|---|---|---|
Al86Ni8Y6 | As-cast ribbon | 10 | 181 | 303.2 | 335 |
40 | 191.5 | 323 | 358 | ||
Milled ribbon particles | 10 | - | 300.2 | 343 | |
40 | - | 320.9 | 361 | ||
Al86Ni6Y4.5Co2La1.5 | As-cast ribbon | 10 | 173 | 323 | 361 |
40 | 185 | 337 | 380 | ||
Milled ribbon particles | 10 | - | 315 | 365.5 | |
40 | - | 328 | 381 |
Table 1 Transition temperatures of Al86Ni8Y6 and Al86Ni6Y4.5Co2La1.5 as-cast ribbons and related milled ribbon particles at different heating rates
Composition | Sample | Heating rate (°C/min) | Tx1 (ºC) | Tx2 (ºC) | Tx3 (ºC) |
---|---|---|---|---|---|
Al86Ni8Y6 | As-cast ribbon | 10 | 181 | 303.2 | 335 |
40 | 191.5 | 323 | 358 | ||
Milled ribbon particles | 10 | - | 300.2 | 343 | |
40 | - | 320.9 | 361 | ||
Al86Ni6Y4.5Co2La1.5 | As-cast ribbon | 10 | 173 | 323 | 361 |
40 | 185 | 337 | 380 | ||
Milled ribbon particles | 10 | - | 315 | 365.5 | |
40 | - | 328 | 381 |
Fig. 5 Back scattered diffraction images of Al86Ni8Y6 and Al86Ni6Y4.5Co2La1.5 amorphous nanocomposites spark plasma sintered at a, c 500 °C and 500 MPa, b, d 400 °C and 600 MPa and e, f 300 °C and 700 MPa revealing crystalline phases in the amorphous matrix and porosities marked by the arrows
Fig. 6 SAED pattern and HRTEM image of a, c Al86Ni8Y6 and b, d Al86Ni6Y4.5Co2La1.5 spark plasma sintered samples revealing evolution of various crystalline phases in the amorphous matrix
Fig. 8 Variation of nanohardness and elastic modulus with indentation depth of Al86Ni8Y6 and Al86Ni6Y4.5Co2La1.5 as-cast ribbons and corresponding spark plasma sintered samples
Sample | H (GPa) | E (GPa) | H/E |
---|---|---|---|
Al86Ni8Y6 as-cast ribbon | 3.26 ± 0.59 | 62.69 ± 10.89 | 0.052 |
Consolidated Al86Ni8Y6 sample | 6.06 ± 0.70 | 79.79 ± 6.33 | 0.076 |
Al86Ni6Y4.5Co2La1.5 as-cast ribbon | 3.81 ± 0.58 | 68.04 ± 7.4 | 0.056 |
Consolidated Al86Ni6Y4.5Co2La1.5 sample | 6.14 ± 0.82 | 84.11 ± 12.01 | 0.073 |
Table 2 Average nanohardness (H) and elastic modulus (E), and corresponding H/E ratio of the as-cast ribbons and sintered samples
Sample | H (GPa) | E (GPa) | H/E |
---|---|---|---|
Al86Ni8Y6 as-cast ribbon | 3.26 ± 0.59 | 62.69 ± 10.89 | 0.052 |
Consolidated Al86Ni8Y6 sample | 6.06 ± 0.70 | 79.79 ± 6.33 | 0.076 |
Al86Ni6Y4.5Co2La1.5 as-cast ribbon | 3.81 ± 0.58 | 68.04 ± 7.4 | 0.056 |
Consolidated Al86Ni6Y4.5Co2La1.5 sample | 6.14 ± 0.82 | 84.11 ± 12.01 | 0.073 |
[1] | B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang, E. Ma, Scr. Mater. 61, 423 (2009). |
[2] | X. Yang, Y. Zhou, R. Zhuu, S. Xi, C. He, H. Wu, Y. Gao, Acta Metall. Sin. Engl. Lett. 33, 1057 (2020). |
[3] | Y.H. Zhang, K.F. Zhang, Z.M. Yuan, P.P. Wang, Y. Cai, W.G. Bu, Acta Metall. Sin. Engl. Lett. 32, 1089 (2019). |
[4] | H. Yang, J.Q. Wang, Y. Li, Philos. Mag. 87, 4211 (2007). |
[5] | F.X. Qin, C. Ji, Z.H. Dan, G.Q. Xie, H. Wang, S. Yamaura, M. Niinomi, Y.D. Li, Acta Metall. Sin. Engl. Lett. 29, 793 (2016). |
[6] | Y. Kawamura, A. Inoue, K. Sasamori, T. Masumoto, Mater. Sci. Eng. A181/A182, 1174 (1994). |
[7] | O.N. Senkov, D.B. Miracle, J.M. Scott, S.V. Senkova, J. Alloys Compd. 365, 126 (2004). |
[8] | X.P. Li, M. Yan, H. Imai, K. Kondoh, J.Q. Wang, G.B. Schaffer, M. Qian, Materx. Sci. Eng. A 568, 155 (2013). |
[9] | S.S. Deng, D.J. Wang, Q. Luo, Y.J. Huang, J. Shen Adv. Powder Technol. 26, 1696 (2015). |
[10] | X.P. Li, M. Yan, G. Ji, M.S. Qian, J. Nanomater. 2013, 1 (2013). |
[11] | O. Guillon, J.G. Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, Adv. Eng. Mater. 16, 830 (2014). |
[12] | R.S. Maurya, A. Sahu, T. Laha, Mater. Sci. Eng. A 649, 48 (2016). |
[13] | A. Sahu, R.S. Maurya, T. Laha, Prog. Nat. Sci. 29, 32 (2019). |
[14] | R.S. Maurya, A. Sahu, T. Laha, J. Non-Cryst, Solids 453, 1 (2016). |
[15] | R.S. Maurya, A. Sahu, T. Laha, Adv. Mater. Lett. 7, 187 (2016). |
[16] | R.S. Maurya, A. Sahu, T. Laha, Mater. Des. 93, 96 (2016). |
[17] | X. Wei, F. Han, X. Wang, X.C. Wen, J. Alloys Compd. 501, 164 (2010). |
[18] | X. Wang, K. Wang, Z. Li, X. Wang, D. Wang, F. Han, J. Alloys Compd. 632, 617 (2015). |
[19] | M. Krasnowski, A.A. Dudka, T. Kulik, Intermetallics 19, 1243 (2011). |
[20] | C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001). |
[21] | A. Sahu, R.S. Maurya, T. Laha, Adv. Powder Technol. 30, 691 (2019). |
[22] | Z. Xiao, C. Tang, H. Zhao, D. Zhang, Y.J. Li, J. Non-Cryst,Solids 358, 114 (2012). |
[23] | H. Wang, Y. Liu, X. Pan, C. Feng, F. Ai, Y.J. Zhang, J. Alloys Compd. 477, 291 (2009). |
[24] | A. Sahu, R.S. Maurya, T. Laha, Thermochim. Acta 684, 1 (2020). |
[25] | A. Sahu, R.S. Maurya, S. Dinda, T. Laha, Metall. Mater. Trans. A 51, 5110 (2020). |
[26] | X.P. Li, M. Yan, H. Imai, K. Kondoh, G.B. Schaffer, M. Qian, J. Non-Cryst, Solids 375, 95 (2013). |
[27] | W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992). |
[28] | L.K. Singh, A. Bhadauria, S. Jana, T. Laha, Acta Metall. Sin. Engl. Lett. 31, 1019 (2018). |
[29] | M. R.V. Landingham, J. Res. Natl. Inst. Stand. Technol. 108, 249 (2003). |
[30] | P. Ramasamy, R.N. Shahid, S. Scudino, J. Eckert, M. Stoica, J. Alloys Compd. 725, 227 (2017). |
[31] | S. Sharma, C. Suryanarayana, J. Appl. Phys. 102, 1 (2007). |
[32] | J. Bednarcik, E. Burkel, K. Saksl, P. Kollár, S. Roth, J. Appl. Phys. 100, 1 (2006). |
[33] | M.S.E. Eskandarany, K. Aoki, K. Sumiyama, K. Suzuki, Acta Mater. 50, 1113 (2002). |
[34] | X.P. Li, M. Yan, B.J. Yang, J.Q. Wang, G.B. Schaffer, M. Qian, Mater. Sci. Eng. A 530, 432 (2011). |
[35] | H. Guo, C. Jiang, B. Yang, J. Wang, J. Mater. Sci. Technol. 33, 1272 (2017). |
[36] | Z. Zhang, Y. Zhou, E.J.J. Lavernia, J. Alloys Compd. 466, 189 (2008). |
[37] | Y. He, G.J. Shiflet, S.J. Poon, Acta Metall. Mater. 43, 83 (1995). |
[38] | H.B. Yu, K. Samwer, Y. Wu, W.H. Wang, Phys. Rev. Lett. 109, 1 (2012). |
[39] | V. Zollmer, K. Ratzke, F. Faupel, Phys. Rev. Lett. 90, 1 (2003). |
[40] | Z.F. Liu, Z.H. Zhang, J.F. Lu, A.V. Korznikov, E. Korznikova, F.C. Wang, Mater. Des. 64, 625 (2014). |
[41] | S. Varam, K.V. Rajulapati, B.S. Rao, K. J. Alloys Compd. 585, 795 (2014). |
[42] | X.K. Sun, H.T. Cong, M. Sun, M.C. Yang, Metall. Mater. Trans. A 31, 1017 (2000). |
[43] | L.K. Singh, A. Bhadauria, A. Oraon, T. Laha, Diam. Relat. Mater. 91, 144 (2019). |
[44] | L.K. Singh, A. Bhadauria, T. Laha, J. Mater. Sci. 56, 1730 (2021). |
[45] | L.K. Singh, A. Maiti, R.S. Maurya, T. Laha, Mater. Manuf. Process 31, 733 (2016). |
[46] | M. Ohtsuki, K. Nagata, R. Tamura, S. Takeuchi, Mater. Trans. 46, 48 (2005). |
[47] | X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011). |
[48] | J. Jang, B.G. Yoo, Y.J. Kim, J.H. Oh, I.C. Choi, H. Bei, Scr. Mater. 64, 753 (2011). |
[49] | S. Nachum, A.L. Greer, J. Alloys Compd. 615, S98 (2014). |
[1] | Shuaishuai Wei, Bo Song, Yuanjie Zhang, Lei Zhang, Yusheng Shi. Mechanical Response of Triply Periodic Minimal Surface Structures Manufactured by Selective Laser Melting with Composite Materials [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 397-410. |
[2] | Ying-Xi Li, Fan-Qiang Meng, Rui Yuan, Guo-Qiang Huang, Dong-Bai Sun. Devitrification of Al-Ce Amorphous Ribbon Investigated Using In situ High Energy X-ray Diffraction [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 157-162. |
[3] | Zongye Ding, Qiaodan Hu, Fan Yang, Liao Yu, Tianxing Yang, Naifang Zhang, Wenquan Lu, Jingwei Yang, Jian Qiao, Jianguo Li. Unveiling the Growth Mechanism of Faceted Primary Al2Cu with Complex Morphologies During Solidification [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 124-132. |
[4] | Liangyuan Wang, Lei Shen, Yongcun Li, Yuanjie Wang, Yu Xiao, Xingyi Zhang, Feng Xu, Xiaofang Hu. In situ SR-CT Experimental Study on the Directional Sintering of High-Temperature Superconductor YBCO Materials in the Microwave Fields [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 67-77. |
[5] | H.R. Lin, Y. Z. Tian, S.J. Sun, Z.F. Zhang. Microstructural Evolution and Mechanical Properties of Laminated CuAl Composites Processed by Accumulative Roll-Bonding and Annealing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 925-931. |
[6] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[7] | Tongye Li, Jing Yang, Chong Yu, Yihan Liang, Yang Li, Xinfang Zhang. Preliminary Investigation of Preparing High Burn-Up Structure in Nuclear Fuel by Flash Sintering Using CeO2 as a Surrogate [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1758-1768. |
[8] | Chunliang Yang, Chuansong Wu, Junjie Zhao. Numerical Prediction of Intermetallic Compounds Thickness in Friction Stir Welding of Dissimilar Aluminum/Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1375-1385. |
[9] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[10] | Boxiang Wang, Zhenhua Wang, Juntang Yuan, Bin Yu. Effects of (Ti, W)C Addition on the Microstructure and Mechanical Properties of Ultrafine WC-Co Tool Materials Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 892-902. |
[11] | Bing Li, Bugang Teng, Baoting Zhang. Integrated Extrusion-Shear Forming Process of the Solid-State Recycled AZ80 Magnesium Alloy via Hot Press Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 351-361. |
[12] | He Li, Yongsheng Liu, Yansong Liu, Kehui Hu, Zhigang Lu, Jingjing Liang. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Al2O3 Ceramic via 3D Stereolithography [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 204-214. |
[13] | Hong-Qiang Zhang, Hai-Lin Bai, Qiang Jia, Wei Guo, Lei Liu, Gui-Sheng Zou. High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1543-1555. |
[14] | Shuang Li, Xiao-Wu Hu, Wei-Guo Zhang, Yu-Long Li, Xiong-Xin Jiang. Comparative Study on Solid-State and Metastable Liquid-State Aging for SAC305/Cu Joints [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(5): 629-673. |
[15] | Zhi-Wei Lai, Zhe-Yuan Huang, Chuan Pan, Hui-Qiao Du, Xiao-Guang Chen, Lei Liu, Wei-Ming Long, Gui-Sheng Zou. Rapid Ultrasonic-Assisted Soldering of AZ31B Mg Alloy/6061 Al Alloy with Low-Melting-Point Sn-xZn Solders Without Flux in Air [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 332-342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||