Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (12): 1618-1634.DOI: 10.1007/s40195-021-01262-w
Previous Articles Next Articles
Zheng-Zheng Yin1, Wei Zhao1, Jing Xu1, Rong-Chang Zeng1,2,3(), Feng-Qin Wang1(
), Zhen-Lin Wang4
Received:
2021-01-29
Revised:
2021-04-21
Accepted:
2021-04-25
Online:
2021-12-10
Published:
2021-12-10
Contact:
Rong-Chang Zeng,Feng-Qin Wang
About author:
Feng-Qin Wang skdwangfengqin@163.comZheng-Zheng Yin, Wei Zhao, Jing Xu, Rong-Chang Zeng, Feng-Qin Wang, Zhen-Lin Wang. Corrosion Resistance of Superhydrophobic Mg(OH)2/Calcium Myristate Composite Coating on Magnesium Alloy AZ31[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1618-1634.
Add to citation manager EndNote|Ris|BibTeX
Liquids | \({\gamma }_{\mathrm{L}}\) | \({\gamma }_{\mathrm{L}}^{+}\) | \({\gamma }_{\mathrm{L}}^{-}\) | \({\gamma }_{\mathrm{L}}^{\mathrm{LW}}\) |
---|---|---|---|---|
Diiodomethane | 50.8 | 0 | 0 | 50.8 |
Glycol | 48.0 | 1.92 | 47.0 | 29.0 |
Water | 72.8 | 25.5 | 25.5 | 21.8 |
Table 1 Surface energy parameters (γ) of three liquids phase (mJ/m2) [23]
Liquids | \({\gamma }_{\mathrm{L}}\) | \({\gamma }_{\mathrm{L}}^{+}\) | \({\gamma }_{\mathrm{L}}^{-}\) | \({\gamma }_{\mathrm{L}}^{\mathrm{LW}}\) |
---|---|---|---|---|
Diiodomethane | 50.8 | 0 | 0 | 50.8 |
Glycol | 48.0 | 1.92 | 47.0 | 29.0 |
Water | 72.8 | 25.5 | 25.5 | 21.8 |
Fig. 5 Contact angles of a-1, b-1 and c-1 the dipped and a-2, b-2 and c-2 electrodeposited coatings under different liquid phases: a diiodomethane, b glycol, and c water
Sample | \({\gamma }_{\mathrm{S}}^{-}\) | \({\gamma }_{\mathrm{S}}^{+}\) | \({\gamma }_{\mathrm{S}}^{\mathrm{AB}}\) | \({\gamma }_{\mathrm{S}}^{\mathrm{LW}}\) | \({\gamma }_{\mathrm{s}}\) |
---|---|---|---|---|---|
Coating II | 0.08 | 0.01 | 0.06 | 16.73 | 16.79 |
Coating III | 0.97 | 0.72 | 1.67 | 6.21 | 7.88 |
Table 2 Surface energy results (mJ/m2) of two post-treatment coatings
Sample | \({\gamma }_{\mathrm{S}}^{-}\) | \({\gamma }_{\mathrm{S}}^{+}\) | \({\gamma }_{\mathrm{S}}^{\mathrm{AB}}\) | \({\gamma }_{\mathrm{S}}^{\mathrm{LW}}\) | \({\gamma }_{\mathrm{s}}\) |
---|---|---|---|---|---|
Coating II | 0.08 | 0.01 | 0.06 | 16.73 | 16.79 |
Coating III | 0.97 | 0.72 | 1.67 | 6.21 | 7.88 |
Samples | βa (mV·dec-1) | - βc (mV·dec-1) | Ecorr (V/SCE) | icorr (A·cm-2) | Rp (Ω·cm2) | η (%) |
---|---|---|---|---|---|---|
AZ31 | 83.81 | 122.89 | - 1.53 | 3.36 × 10-5 | 6.44 × 102 | - |
Coating I | 127.00 | 77.40 | - 1.45 | 3.23 × 10-7 | 6.46 × 104 | 99.04 |
Coating II | 133.52 | 102.13 | - 1.47 | 4.62 × 10-7 | 5.44 × 104 | 98.63 |
Coating III | 8.96 | 115.19 | - 1.43 | 1.86 × 10-8 | 1.94 × 105 | 99.95 |
Table 3 Electrochemical parameters of the polarization curves
Samples | βa (mV·dec-1) | - βc (mV·dec-1) | Ecorr (V/SCE) | icorr (A·cm-2) | Rp (Ω·cm2) | η (%) |
---|---|---|---|---|---|---|
AZ31 | 83.81 | 122.89 | - 1.53 | 3.36 × 10-5 | 6.44 × 102 | - |
Coating I | 127.00 | 77.40 | - 1.45 | 3.23 × 10-7 | 6.46 × 104 | 99.04 |
Coating II | 133.52 | 102.13 | - 1.47 | 4.62 × 10-7 | 5.44 × 104 | 98.63 |
Coating III | 8.96 | 115.19 | - 1.43 | 1.86 × 10-8 | 1.94 × 105 | 99.95 |
Fig. 8 Electrochemical results of a, b Nyquist and its magnified one, c Bode plots of Zmod, d Bode plots of phase angle in 3.5% NaCl solution, e corresponding EC models
Sample | Rs (Ω·cm2) | CPEf (Ω-1·sn·cm-2) | n | Rf (Ω·cm2) | CPE1 (Ω-1·sn·cm-2) | n | Rct (Ω·cm2) | RL (Ω·cm2) | L (H·cm2) |
---|---|---|---|---|---|---|---|---|---|
AZ31 | 25.84 | - | - | - | 9.83 × 10-6 | 0.96 | 2.59 × 102 | 2.87 × 102 | 9.97 × 102 |
Coating I | 34.58 | 7.37 × 10-7 | 0.87 | 1.29 × 104 | 5.47 × 10-5 | 0.30 | 7.78 × 104 | 2.31 × 104 | 1.98 × 105 |
Coating II | 31.57 | 1.16 × 10-6 | 0.89 | 9.91 × 103 | 9.95 × 10-5 | 0.28 | 1.15 × 104 | 1.35 × 104 | 1.92 × 105 |
Coating III | 4.56 × 103 | 1.08 × 10-9 | 0.88 | 2.16 × 104 | 6.44 × 10-7 | 0.54 | 5.48 × 106 | 2.85 × 105 | 5.63 × 102 |
Table 4 Equivalent circuit fitting results of the EIS data
Sample | Rs (Ω·cm2) | CPEf (Ω-1·sn·cm-2) | n | Rf (Ω·cm2) | CPE1 (Ω-1·sn·cm-2) | n | Rct (Ω·cm2) | RL (Ω·cm2) | L (H·cm2) |
---|---|---|---|---|---|---|---|---|---|
AZ31 | 25.84 | - | - | - | 9.83 × 10-6 | 0.96 | 2.59 × 102 | 2.87 × 102 | 9.97 × 102 |
Coating I | 34.58 | 7.37 × 10-7 | 0.87 | 1.29 × 104 | 5.47 × 10-5 | 0.30 | 7.78 × 104 | 2.31 × 104 | 1.98 × 105 |
Coating II | 31.57 | 1.16 × 10-6 | 0.89 | 9.91 × 103 | 9.95 × 10-5 | 0.28 | 1.15 × 104 | 1.35 × 104 | 1.92 × 105 |
Coating III | 4.56 × 103 | 1.08 × 10-9 | 0.88 | 2.16 × 104 | 6.44 × 10-7 | 0.54 | 5.48 × 106 | 2.85 × 105 | 5.63 × 102 |
Fig. 10 SEM morphologies of a, b AZ31, c, d coating I, e, f coating II and g, h coating III; i EDS, j FTIR as well as k XRD results after an immersed time for 288 h in 3.5% NaCl
Immersion time | βa (mV·dec-1) | - βc (mV·dec-1) | Ecorr (V/SCE) | icorr (A·cm-2) | Rp (Ω·cm2) |
---|---|---|---|---|---|
0 d | 8.96 | 115.19 | - 1.43 | 1.86 × 10-8 | 1.94 × 105 |
1 d | 26.05 | 89.72 | - 1.42 | 1.47 × 10-7 | 9.28 × 104 |
3 d | 71.45 | 65.85 | - 1.45 | 3.14 × 10-7 | 4.74 × 104 |
5 d | 66.80 | 67.80 | - 1.46 | 1.16 × 10-6 | 1.26 × 104 |
7 d | 57.27 | 64.20 | - 1.43 | 2.46 × 10-6 | 5.34 × 103 |
Table 5 PDP results of coating III after immersion
Immersion time | βa (mV·dec-1) | - βc (mV·dec-1) | Ecorr (V/SCE) | icorr (A·cm-2) | Rp (Ω·cm2) |
---|---|---|---|---|---|
0 d | 8.96 | 115.19 | - 1.43 | 1.86 × 10-8 | 1.94 × 105 |
1 d | 26.05 | 89.72 | - 1.42 | 1.47 × 10-7 | 9.28 × 104 |
3 d | 71.45 | 65.85 | - 1.45 | 3.14 × 10-7 | 4.74 × 104 |
5 d | 66.80 | 67.80 | - 1.46 | 1.16 × 10-6 | 1.26 × 104 |
7 d | 57.27 | 64.20 | - 1.43 | 2.46 × 10-6 | 5.34 × 103 |
Immersion time | Rs (Ω cm2) | CPEf (Ω-1 sn cm-2) | n | Rf (Ω cm2) | CPE1 (Ω-1 sn cm-2) | n | Rct (Ω cm2) | RL (Ω cm2) | L (H cm2) |
---|---|---|---|---|---|---|---|---|---|
0 d | 4.56 × 103 | 1.08 × 10-9 | 0.88 | 2.16 × 104 | 6.44 × 10-7 | 0.54 | 5.48 × 106 | 2.85 × 105 | 5.63 × 102 |
1 d | 2.29 × 103 | 2.31 × 10-10 | 0.97 | 1.60 × 104 | 1.63 × 10-6 | 0.65 | 7.13 × 104 | 7.27 × 104 | 6.66 × 106 |
3 d | 2.78 × 103 | 2.58 × 10-9 | 0.83 | 3.41 × 103 | 2.52 × 10-5 | 0.35 | 5.78 × 104 | 6.21 × 104 | 3.75 × 104 |
5 d | 1.81 × 103 | 2.53 × 10-7 | 0.54 | 3.75 × 103 | 3.69 × 10-5 | 0.47 | 6.39 × 103 | 3.14 × 104 | 9.11 × 105 |
7 d | 2.76 × 103 | 1.47 × 10-5 | 0.47 | 1.03 × 103 | 1.26 × 10-5 | 0.75 | 4.04 × 103 | 1.10 × 104 | 8.40 × 104 |
Table 6 Fitting results of coating III after immersion
Immersion time | Rs (Ω cm2) | CPEf (Ω-1 sn cm-2) | n | Rf (Ω cm2) | CPE1 (Ω-1 sn cm-2) | n | Rct (Ω cm2) | RL (Ω cm2) | L (H cm2) |
---|---|---|---|---|---|---|---|---|---|
0 d | 4.56 × 103 | 1.08 × 10-9 | 0.88 | 2.16 × 104 | 6.44 × 10-7 | 0.54 | 5.48 × 106 | 2.85 × 105 | 5.63 × 102 |
1 d | 2.29 × 103 | 2.31 × 10-10 | 0.97 | 1.60 × 104 | 1.63 × 10-6 | 0.65 | 7.13 × 104 | 7.27 × 104 | 6.66 × 106 |
3 d | 2.78 × 103 | 2.58 × 10-9 | 0.83 | 3.41 × 103 | 2.52 × 10-5 | 0.35 | 5.78 × 104 | 6.21 × 104 | 3.75 × 104 |
5 d | 1.81 × 103 | 2.53 × 10-7 | 0.54 | 3.75 × 103 | 3.69 × 10-5 | 0.47 | 6.39 × 103 | 3.14 × 104 | 9.11 × 105 |
7 d | 2.76 × 103 | 1.47 × 10-5 | 0.47 | 1.03 × 103 | 1.26 × 10-5 | 0.75 | 4.04 × 103 | 1.10 × 104 | 8.40 × 104 |
Method | Substrate | Middle layer | Superhydrophobic coating | References |
---|---|---|---|---|
MAO + Electrodeposition | 3.55 × 10-5 | 8.36 × 10-6 | 7.68 × 10-8 | [ |
MAO + Soak/Heated | 4.21 × 10-4 | 1.13 × 10-6 | 2.35 × 10-7 | [ |
Layered double hydroxide (LDH) + Soak | 7.54 × 10-6 | 1.67 × 10-7 | 7.70 × 10-8 | [ |
LDH + Electrodeposition | 9 × 10-5 | 4 × 10-5 | 4 × 10-6 | [ |
Soak + Hydrothermal | 4.25 × 10-6 | 5.96 × 10-7 | 4.13 × 10-8 | [ |
Soak + Soak | 9.25 × 10-5 | - | 2.17 × 10-7 | [ |
Plasma Sputter + Chemical Vapor Deposition | 6.92 × 10-4 | - | 1.50 10-5 | [ |
Table 7 Comparison of corrosion resistance (icorr) of superhydrophobic coatings prepared by different methods (A cm-2)
Method | Substrate | Middle layer | Superhydrophobic coating | References |
---|---|---|---|---|
MAO + Electrodeposition | 3.55 × 10-5 | 8.36 × 10-6 | 7.68 × 10-8 | [ |
MAO + Soak/Heated | 4.21 × 10-4 | 1.13 × 10-6 | 2.35 × 10-7 | [ |
Layered double hydroxide (LDH) + Soak | 7.54 × 10-6 | 1.67 × 10-7 | 7.70 × 10-8 | [ |
LDH + Electrodeposition | 9 × 10-5 | 4 × 10-5 | 4 × 10-6 | [ |
Soak + Hydrothermal | 4.25 × 10-6 | 5.96 × 10-7 | 4.13 × 10-8 | [ |
Soak + Soak | 9.25 × 10-5 | - | 2.17 × 10-7 | [ |
Plasma Sputter + Chemical Vapor Deposition | 6.92 × 10-4 | - | 1.50 10-5 | [ |
[1] | P. Bansal, G. Singh, H.S. Sidhu, Surf. Coat. Technol. 401, 126241(2020) |
[2] | X. Wang, C. Jing, Y.X. Chen, X.S. Wang, G. Zhao, X. Zhang, L. Wu, X.Y. Liu, B.Q. Dong, Y.X. Zhang, J. Magnesium Alloys 8, 291 (2020) |
[3] | Y. Shao, R.C. Zeng, S.Q. Li, L.Y. Cui, Y.H. Zou, S.K. Guan, Y.F. Zheng, Acta Metall. Sin. -Engl. Lett. 33, 615(2020) |
[4] | W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, H.L. Yu, K. Qiao, K.S. Wang, Acta Metall Sin. Engl. Lett. 33, 43(2020) |
[5] | J.A. Li, L. Chen, X.Q. Zhang, S.K. Guan, Mater. Sci. Eng. C 109, 110607 (2020) |
[6] | L.Y. Cui, G.B. Wei, Z.Z. Han, R.C. Zeng, L. Wang, Y.H. Zou, S.Q. Li, D.K. Xu, S.K. Guan, J. Mater. Sci. Technol. 35, 254(2019) |
[7] | T.X. Zheng, Y.B. Hu, F.S. Pan, Y.X. Zhang, A.T. Tang, J. Magnesium Alloys 7, 193 (2019) |
[8] | J. Kuang, Z.X. Ba, Z.Z. Li, Y.Q. Jia, Z.Z. Wang, Surf. Coat. Technol. 361, 75(2019) |
[9] | C.Y. Li, L. Gao, X.L. Fan, R.C. Zeng, D.C. Chen, K.Q. Zhi, Bioact. Mater. 5, 364(2020) |
[10] | H.R. Bakhsheshi-Rad, E.H.M. Daroonparvar, S.N. Saud, M.R. Abdul-kadir, Vacuum 110, 127 (2014) |
[11] |
H.R. Bakhsheshi-Rad, E. Hamzah, G.J. Dias, F. Yaghoubidoust, Z. Hadisi, J. Alloys Compd. 728, 159(2017)
DOI URL |
[12] | A. Abdal-hay, N.A.M. Barakat, J.K. Lim, Colloids Surf. A 420, 37 (2013) |
[13] | J.Y. Hu, Q. Li, X.K. Zhong, L. Zhang, B. Chen, Prog. Org. Coat. 66, 199(2009) |
[14] | L. Guo, F. Zhang, L. Song, R.C. Zeng, S.Q. Li, E.H. Han, Surf. Coat. Technol. 328, 121(2017) |
[15] | Y.H. Ho, K. Man, S.S. Joshi, M.V. Pantawane, T.C. Wu, Y. Yang, N.B. Dahotre, Bioact. Mater. 5, 891(2020) |
[16] | E. Yılmaz, B. Çkıroğlu, A. Gökç, F. Findik, H.O. Gulsoy, N. Gulsoy, Ö Mutlu, M. Öacar, Mater. Sci. Eng. C 101, 292 (2019) |
[17] | Z.Z. Yin, W.C. Qi, R.C. Zeng, X.B. Chen, C.D. Gu, S.K. Guan, Y.F. Zheng, j. Magnesium Alloys 8, 42 (2020) |
[18] | N.V. Phuong, S. Moon, Mater. Lett. 122, 341(2014) |
[19] | C.Y. Li, X.L. Fan, L.Y. Cui, R.C. Zeng, Corros. Sci. 168, 108570(2020) |
[20] | W.H. Yao, W. Liang, G.S. Huang, B. Jiang, A. Atrens, F.S. Pan. J. Mater. Sci. Technol. 52, 100(2020) |
[21] | Z.Q. Zhang, L. Wang, M.Q. Zeng, R.C. Zeng, C.G. Lin, Z.L. Wang, D.C. Chen, Q. Zhang, J. Magnesium Alloys(2020). 2020. https://doi.org/10.1016/j.jma.2020.06.011 . |
[22] | F.B. Gong, J. Shen, R.H. Gao, X. Xie, X. Luo, Appl. Surf. Sci. 365, 268(2016) |
[23] | Z.Q. Zhang, R.C. Zeng, W. Yan, C.G. Lin, L. Wang, Z.L. Wang, D.C. Chen, J. Alloys Compd. 821, 153515(2020) |
[24] | Q.S. Yao, Z.C. Li, Z.M. Qiu, F. Zhang, X.B. Chen, D.C. Chen, S.K. Guan, R.C. Zeng, Rare Met. 038, 629(2019) |
[25] | Q. Zhao, W. Mahmood, Y.Y. Zhu, Appl. Surf. Sci. 367, 249(2016) |
[26] | C.Y. Li, X.L. Fan, R.C. Zeng, L.Y. Cui, S.Q. Li, J. Mater. Sci. Technol. 35, 134(2019) |
[27] | V. Chobaomsup, M. Metzner, Y. Boonyongmaneerat, J. Coat. Technol. Res. 17, 583(2020) |
[28] | M. Yeganeh, N. Mohammadi, J. Magnesium Alloys 6, 59 (2018) |
[29] | Y. Liu, J.Z. Xue, D. Luo, H.Y. Wang, X. Gong, Z.W. Han, L.Q. Ren, J. Colloid Interf. Sci 491, 313(2017) |
[30] | L. Wu, J.H. Wu, Z.Y. Zhang, C. Zhang, Y.X. Zhang, A.T. Tang, L.J. Li, G. Zhang, Z.C. Zheng, A. Atrens, F.S. Pan, Appl. Surf. Sci. 487, 569(2019) |
[31] | J.G. Liu, X.T. Fang, C.Y. Zhu, X. Xing, G. Cui, Z.L. Li, Colloids Surf. A 607, 125498 (2020) |
[32] | Z.F. Cao, Q. Pei, C. Pei, W. Xin, G.Y. Liu, W. Shuai, Z. Hong, Metall. Res. Technol. 114, 203(2017) |
[33] | L.Y. Cui, H.P. Liu, W.L. Zhang, Z.Z. Han, M.X. Deng, R.C. Zeng, S.Q. Li, Z.L. Wang. J. Mater. Sci. Technol. 33, 1263(2017) |
[34] | L.Y. Cui, S.C. Cheng, L.X. Liang, J.C. Zhang, S.Q. Li, Z.L. Wang, R.C. Zeng, Bioact. Mater. 5, 153(2020) |
[35] | Z.X. Kang, W. Li. J. Ind. Eng. Chem. 50, 50(2017) |
[36] | S.W. Tang, Y.Y. Zhang, H.S. San, J. Hu, Appl. Surf. Sci. 496, 143627(2019) |
[37] | Z.Z. Yin, W. Huang, X. Song, Q. Zhang, R.C. Zeng, Front. Mater. Sci. 14, 296(2020) |
[38] |
B.B. Zhang, J.R. Li, X. Zhao, X.H. Hu, L.H. Yang, N. Wang, Y.T. Li, B.R. Hou, Chem. Eng. J. 306, 441(2016)
DOI URL |
[39] | L.Y. Li, L.Y. Cui, B. Liu, R.C. Zeng, X.B. Chen, S.Q. Li, Z.L. Wang, E.H. Han, Appl. Surf. Sci. 465, 1066(2019) |
[40] | M.A. Ashraf, Z.L. Liu, W.X. Peng, N. Yoysefi, Prog. Org. Coat. 136, 105296(2019) |
[41] | X.L. Fan, C.Y. Li, Y.B. Wang, Y.F. Huo, S.Q. Li, R.C. Zeng, J. Mater. Sci. Technol. 49, 224(2020) |
[42] | S.Q. Liu, Y.M. Qi, Z.J. Peng, J. Liang, Surf. Coat. Technol. 406, 126655(2020) |
[43] | V.Z. Asl, J.M. Zhao, M.J. Anjum, S.X. Wei, W. Wang, Z.J. Zhao, J. Alloys Compd. 821, 153248(2020) |
[44] | X.L. Fan, Y.F. Huo, C.Y. Li, M.B. Kannan, X.B. Chen, S.K. Guan, R.C. Zeng, Q.L. Ma, Rare Met. 38, 520(2019) |
[45] | L. Zhao, Q. Liu, R. Gao, J. Wang, W.L. Yang, L.H. Liu, Corros. Sci. 80, 177(2014) |
[46] | Q. Liu, Z. Kang, Mater. Lett. 137, 210(2014) |
[47] | A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546(1944) |
[48] | Z.Q. Qian, S.D. Wang, X.S. Ye, Z. Liu, Z.J. Wu, Appl. Surf. Sci. 453, 1(2018) |
[49] | P. Wang, D. Zhang, R. Qiu, J.J. Wu, Corros. Sci. 83, 317(2014) |
[50] | Z.Z. Yin, Z.Q. Zhang, X.J. Tian, Z.L. Wang, R.C. Zeng, Acta Metall Sin. -Engl. Lett. 34, 25(2021) |
[51] | L.Y. Cui, S.D. Gao, P.P. Li, R.C. Zeng, F. Zhang, S.Q. Li, E.H. Han, Corros. Sci. 118, 84(2017) |
[52] | A.H. Liu, J.L. Xu, Trans. Nonferrous Met. Soc. China 28, 2287 (2018) |
[53] | Y.X. Zhu, G.L. Song, P.P. Wu, J.F. Huang, D.J. Zheng, J. Alloys Compd 855, 157550(2021) |
[54] | J. Kuang, Z.X. Ba, Z.Z. Li, Z.Z. Wang, J.H. Qiu, Appl. Surf. Sci. 501, 144137(2020) |
[55] | C.Y. Zhang, S.Y. Zhang, D.W. Sun, J.J. Lin, F.C. Meng, H.N. Liu J. Magnesium Alloys(2020). https://doi.org/10.1016/j.jma.2020.05.017 . |
[56] | T. Ishizaki, Y. Masuda, M. Sakamoto, Langmuir 27, 4780 (2011) |
[57] | A.R. Siddiqui, R. Maurya, P.K. Katiyar, K. Balani, Surf. Coat. Technol. 404, 126421(2020) |
[1] | Jie Cui, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Fluidity, Microstructure, and Tensile Properties of Sub-rapidly Solidified Mg-6Al-4Zn-xSn (x = 0, 0.6, 1.2, 1.8) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1265-1276. |
[2] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[3] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[4] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[5] | Ben-Qi Xu, Hui Zhang, Dong Ma, Qun-Shuang Ma, Li-Zhai Pei. Ageing Hardening Mechanism and Corrosion Resistance in the Fe65Cr13Cu3(CoMnMoNiAlTi)19 Medium-Entropy Stainless Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1601-1608. |
[6] | Chunliang Yang, Chuansong Wu, Junjie Zhao. Numerical Prediction of Intermetallic Compounds Thickness in Friction Stir Welding of Dissimilar Aluminum/Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1375-1385. |
[7] | Ying-Ying Zuo, Hua Liu, Peng Gong, Shu-De Ji, Bao-Sheng Wu. Radial Additive Friction Stir Repairing of Mechanical Hole Out of Dimension Tolerance of AZ31 Magnesium Alloy Assisted by Stationary Shoulder: Process and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1345-1360. |
[8] | Jie Wei, Qudong Wang, Li Zhang, Mahmoud Ebrahimi, Haiyan Jiang, Wenjiang Ding. Effects of Gd Addition on the Microstructure and Tensile Properties of Mg-4Al-5RE Alloy Produced by Three Different Casting Methods [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1361-1374. |
[9] | Mingming Zhang, Yipeng Feng, Yahui Wang, Yunsong Niu, Li Xin, Yongfeng Li, Jianxiu Su, Shenglong Zhu, Fuhui Wang. Corrosion Behaviors of Nitride Coatings on Titanium Alloy in NaCl-Induced Hot Corrosion [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1434-1446. |
[10] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[11] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[12] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[13] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[14] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[15] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||