Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (6): 813-824.DOI: 10.1007/s40195-020-01182-1
Previous Articles Next Articles
Liwen Tan1, Zhongwei Wang1(), Yanlong Ma1(
)
Received:
2020-07-06
Revised:
2020-10-15
Accepted:
2020-11-09
Online:
2021-06-10
Published:
2021-05-31
Contact:
Zhongwei Wang,Yanlong Ma
About author:
Yanlong Ma. myl@cqut.edu.cnLiwen Tan, Zhongwei Wang, Yanlong Ma. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Typical Corrosive Media[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 813-824.
Add to citation manager EndNote|Ris|BibTeX
Corrosion medium | icorr (A cm-2) | Ecorr (V) | βA | βC |
---|---|---|---|---|
NaCl | 5.12 × 10-8 | - 0.159 | 0.219 | 0.052 |
Na2SO4 | 9.91 × 10-8 | - 0.173 | 0.325 | 0.107 |
H2SO4 | 4.23 × 10-6 | - 0.121 | 0.160 | 0.345 |
NaOH | 6.50 × 10-7 | - 0.445 | 0.429 | 0.115 |
Table 1 Electrochemical corrosion parameters of 316L stainless steel obtained from the polarization tests in different corrosion media
Corrosion medium | icorr (A cm-2) | Ecorr (V) | βA | βC |
---|---|---|---|---|
NaCl | 5.12 × 10-8 | - 0.159 | 0.219 | 0.052 |
Na2SO4 | 9.91 × 10-8 | - 0.173 | 0.325 | 0.107 |
H2SO4 | 4.23 × 10-6 | - 0.121 | 0.160 | 0.345 |
NaOH | 6.50 × 10-7 | - 0.445 | 0.429 | 0.115 |
Corrosion medium | Cathodic potential (V vs. Ag/AgCl) | Anodic potential (V vs. Ag/AgCl) |
---|---|---|
NaCl | - 0.80 | 0.22 |
Na2SO4 | - 0.80 | 0.19 |
H2SO4 | - 0.60 | - 0.09 |
NaOH | - 0.80 | - 0.34 |
Table 2 Applied potential values in the tribocorrosion tests
Corrosion medium | Cathodic potential (V vs. Ag/AgCl) | Anodic potential (V vs. Ag/AgCl) |
---|---|---|
NaCl | - 0.80 | 0.22 |
Na2SO4 | - 0.80 | 0.19 |
H2SO4 | - 0.60 | - 0.09 |
NaOH | - 0.80 | - 0.34 |
Corrosion medium | Potential | Fe (wt%) | Cr (wt%) | Ni (wt%) | Mo (wt%) | O (wt%) | Na (wt%) |
---|---|---|---|---|---|---|---|
None | - | 69.43 ± 0.46 | 18.41 ± 0.53 | 9.71 ± 0.91 | 2.44 ± 0.11 | - | - |
NaCl | CPP | 69.16 ± 0.78 | 18.37 ± 0.07 | 10.96 ± 1.87 | 1.79 ± 0.30 | 0.73 ± 0.10 | - |
OCP | 67.48 ± 1.10 | 18.12 ± 0.08 | 10.04 ± 1.03 | 2.02 ± 0.29 | 1.93 ± 1.12 | - | |
APP | 68.28 ± 0.53 | 20.51 ± 1.71 | 8.36 ± 1.8 | 2.01 ± 0.44 | 0.80 ± 0.29 | - | |
Na2SO4 | CPP | 69.58 ± 0.08 | 19.04 ± 0.58 | 9.51 ± 0.58 | 1.88 ± 0.08 | - | - |
OCP | 67.47 ± 0.36 | 17.39 ± 0.12 | 11.36 ± 0.06 | 2.47 ± 0.05 | 1.31 ± 0.13 | - | |
APP | 69.88 ± 0.59 | 18.94 ± 0.09 | 8.97 ± 0.34 | 1.81 ± 0.25 | 0.42 ± 0.01 | - | |
H2SO4 | CPP | 64.87 ± 1.76 | 16.46 ± 0.65 | 13.55 ± 1.22 | 3.07 ± 0.29 | 2.04 ± 0.77 | - |
OCP | 66.37 ± 0.23 | 18.86 ± 0.40 | 8.87 ± 0.25 | 3.30 ± 0.25 | 2.61 ± 0.24 | - | |
APP | 69.45 ± 0.80 | 18.72 ± 0 | 8.94 ± 0.35 | 1.87 ± 0.10 | 1.03 ± 0.35 | - | |
NaOH | CPP | 66.30 ± 3.93 | 17.53 ± 0.86 | 9.22 ± 0.44 | 1.43 ± 0.05 | 5.06 ± 5.16 | 0.45 ± 0.10 |
OCP | 70.28 ± 1.86 | 18.31 ± 0.54 | 9.70 ± 0.67 | 1.71 ± 0.08 | - | - | |
APP | 59.12 ± 0.31 | 16.26 ± 0.00 | 8.68 ± 0.33 | 0.91 ± 0.15 | 14.60 ± 0.57 | 0.44 ± 0.08 |
Table 3 Surface chemical compositions of 316L stainless steel before and after worn in different corrosion media under different potentials
Corrosion medium | Potential | Fe (wt%) | Cr (wt%) | Ni (wt%) | Mo (wt%) | O (wt%) | Na (wt%) |
---|---|---|---|---|---|---|---|
None | - | 69.43 ± 0.46 | 18.41 ± 0.53 | 9.71 ± 0.91 | 2.44 ± 0.11 | - | - |
NaCl | CPP | 69.16 ± 0.78 | 18.37 ± 0.07 | 10.96 ± 1.87 | 1.79 ± 0.30 | 0.73 ± 0.10 | - |
OCP | 67.48 ± 1.10 | 18.12 ± 0.08 | 10.04 ± 1.03 | 2.02 ± 0.29 | 1.93 ± 1.12 | - | |
APP | 68.28 ± 0.53 | 20.51 ± 1.71 | 8.36 ± 1.8 | 2.01 ± 0.44 | 0.80 ± 0.29 | - | |
Na2SO4 | CPP | 69.58 ± 0.08 | 19.04 ± 0.58 | 9.51 ± 0.58 | 1.88 ± 0.08 | - | - |
OCP | 67.47 ± 0.36 | 17.39 ± 0.12 | 11.36 ± 0.06 | 2.47 ± 0.05 | 1.31 ± 0.13 | - | |
APP | 69.88 ± 0.59 | 18.94 ± 0.09 | 8.97 ± 0.34 | 1.81 ± 0.25 | 0.42 ± 0.01 | - | |
H2SO4 | CPP | 64.87 ± 1.76 | 16.46 ± 0.65 | 13.55 ± 1.22 | 3.07 ± 0.29 | 2.04 ± 0.77 | - |
OCP | 66.37 ± 0.23 | 18.86 ± 0.40 | 8.87 ± 0.25 | 3.30 ± 0.25 | 2.61 ± 0.24 | - | |
APP | 69.45 ± 0.80 | 18.72 ± 0 | 8.94 ± 0.35 | 1.87 ± 0.10 | 1.03 ± 0.35 | - | |
NaOH | CPP | 66.30 ± 3.93 | 17.53 ± 0.86 | 9.22 ± 0.44 | 1.43 ± 0.05 | 5.06 ± 5.16 | 0.45 ± 0.10 |
OCP | 70.28 ± 1.86 | 18.31 ± 0.54 | 9.70 ± 0.67 | 1.71 ± 0.08 | - | - | |
APP | 59.12 ± 0.31 | 16.26 ± 0.00 | 8.68 ± 0.33 | 0.91 ± 0.15 | 14.60 ± 0.57 | 0.44 ± 0.08 |
Potential | NaCl | Na2SO4 | H2SO4 | NaOH |
---|---|---|---|---|
CPP | 0.173 | 0.447 | 0.304 | 0.793 |
OCP | 0.245 | 0.215 | 0.909 | 0.106 |
APP | 2.443 | 0.749 | 1.947 | 0.360 |
Table 4 Surface roughness (Ra) of 316L stainless steel after worn in different corrosive media under different potentials (μm)
Potential | NaCl | Na2SO4 | H2SO4 | NaOH |
---|---|---|---|---|
CPP | 0.173 | 0.447 | 0.304 | 0.793 |
OCP | 0.245 | 0.215 | 0.909 | 0.106 |
APP | 2.443 | 0.749 | 1.947 | 0.360 |
Potential | Corrosion medium | Vt | Vw | Vc | ΔV | |||||
---|---|---|---|---|---|---|---|---|---|---|
Vc-w | Vw-c | |||||||||
× 10-6 mm3 | × 10-6 mm3 | % | × 10-6 mm3 | % | × 10-6 mm3 | % | × 10-6 mm3 | % | ||
CPP | Na2SO4 | 1892 | 1892 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
H2SO4 | 2004 | 2004 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |
NaCl | 1099 | 1099 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |
OCP | Na2SO4 | 2267 | 1892 | 83.46 | 9 | 0.39 | 366 | 15.95 | 5 | 0.2 |
H2SO4 | 7558 | 2004 | 26.52 | 75 | 0.99 | 5410 | 71.58 | 69 | 0.92 | |
NaCl | 2329 | 1099 | 47.18 | 5 | 0.22 | 1225 | 51.84 | 17 | 0.77 | |
APP | Na2SO4 | 4308 | 1892 | 43.91 | 3 | 0.06 | 2413 | 54.72 | 56 | 1.3 |
H2SO4 | 16,372 | 2004 | 12.24 | 28 | 0.17 | 14,262 | 87.11 | 78 | 0.48 | |
NaCl | 20,425 | 1099 | 5.38 | 27 | 0.13 | 19,299 | 93.57 | 188 | 0.92 |
Table 5 Data and proportions of each component when 316L stainless steel was worn in different corrosion media under different potentials
Potential | Corrosion medium | Vt | Vw | Vc | ΔV | |||||
---|---|---|---|---|---|---|---|---|---|---|
Vc-w | Vw-c | |||||||||
× 10-6 mm3 | × 10-6 mm3 | % | × 10-6 mm3 | % | × 10-6 mm3 | % | × 10-6 mm3 | % | ||
CPP | Na2SO4 | 1892 | 1892 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
H2SO4 | 2004 | 2004 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |
NaCl | 1099 | 1099 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |
OCP | Na2SO4 | 2267 | 1892 | 83.46 | 9 | 0.39 | 366 | 15.95 | 5 | 0.2 |
H2SO4 | 7558 | 2004 | 26.52 | 75 | 0.99 | 5410 | 71.58 | 69 | 0.92 | |
NaCl | 2329 | 1099 | 47.18 | 5 | 0.22 | 1225 | 51.84 | 17 | 0.77 | |
APP | Na2SO4 | 4308 | 1892 | 43.91 | 3 | 0.06 | 2413 | 54.72 | 56 | 1.3 |
H2SO4 | 16,372 | 2004 | 12.24 | 28 | 0.17 | 14,262 | 87.11 | 78 | 0.48 | |
NaCl | 20,425 | 1099 | 5.38 | 27 | 0.13 | 19,299 | 93.57 | 188 | 0.92 |
[1] | P. Ponthiaux, F. Wenger, D. Drees, J.P. Celis, Wea 256, 459 (2004) |
[2] | R.J.K. Wood, Wear 261, 1012 (2006) |
[3] |
A. Yano, A. Sakanishi, F. Takahashi, S. Shirai, Y. Uchida, K. Fujita, F. Kikkawa, K. Fujioka, T. Kawazoe, K. Saki, Tribol. Trans. 50, 13 (2007)
DOI URL |
[4] | L. Shan, Y. Wang, Y. Zhang, Q. Zhang, Q Xue, Wear 362-363, 97(2016) |
[5] | J. Chen, Q. Zhang, Q. Li, S. Fu, J. Wang, Trans. Nonferr. Met. Soc. China 24, 1022 (2014) |
[6] |
A. Dalmau, C. Richard, A.I. Muñoz, Tribol. Int. 121, 167 (2018)
DOI URL |
[7] |
Z. Wang, Y. Yan, Y. Wang, Y. Su, L. Qiao J. Mater. Sci. Technol. 46, 98 (2020)
DOI URL |
[8] | D. Landolt, S. Mischler, M. Stemp, Electrochim. Acta 46, 3913 (2001) |
[9] |
Z. Wang, Y. Yan, Y. Su, L. Qiao, Appl. Surf. Sci. 406, 319 (2017)
DOI URL |
[10] |
Y. Zhang, X. Yin, J. Wang, F. Yan, Corros. Sci. 88, 423 (2014)
DOI URL |
[11] | Z. Wang, Y. Yan, Y. Su, L. Qiao, Electrochim. Acta 298, 756 (2018) |
[12] |
P. Jemmely, S. Mischler, D. Landolt, Tribol. Int. 32, 295 (1999)
DOI URL |
[13] | R. Priya, C. Mallika, U.K. Mudali, Wea 310, 90 (2014) |
[14] | A. Dalmau, W. Rmili, C. Richard, A. Igual-Muñoz, Wear 368-369, 146(2016) |
[15] |
E. Huttunen-Saarivirta, L. Kilpi, T.J. Hakala, L. Carpen, H. Ronkainen, Tribol. Int. 95, 358 (2016)
DOI URL |
[16] |
Y. Sun, V. Rana, Mater. Chem. Phys. 129, 138 (2011)
DOI URL |
[17] |
Y. Yan, A. Neville, D. Dowson, Tribol. Int. 40, 1492 (2007)
DOI URL |
[18] | J. Perret, E. Boehm-Courjault, M. Cantoni, S. Mischler, A. Beaudouin, W. Chitty, J.P. Vernot, Wea 269, 383 (2010) |
[19] |
B.A. Obadele, A. Andrews, M.B. Shongwe, P.A. Olubambi, Mater. Chem. Phys. 171, 239 (2016)
DOI URL |
[20] |
H. Krawiec, V. Vignal, O. Heintz, P. Ponthiaux, F. Wenger, J. Electrochem. Soc. 155, C127 (2008)
DOI URL |
[21] |
S. Mischler, S. Debaud, D. Landolt, J. Electrochem. Soc. 145, 750 (1998)
DOI URL |
[22] |
Z. Wang, Y. Yan, L. Qiao, J. Mater. Sci. 55, 13351 (2020)
DOI URL |
[23] | A. Iwabuchi, J.W. Lee, M. Uchidate, Wea 263, 492 (2007) |
[24] |
Y. Zhang, X.Y. Yin, F.Y. Yan, Mater. Chem. Phys. 179, 273 (2016)
DOI URL |
[25] | Standard Guide for Determining Synergism Between Wear and Corrosion.ASTM (2016) |
[26] | M.T. Mathew, P. SrinivasaPai, R. Pourzal, A. Fischer, M.A. Wimmer, Adv. Tribol. 145, 1 (2009) |
[27] | J.A. Richardson, Shreir’s Corros. 2, 1191 (2010) |
[28] |
Y. Sun, E. Haruman, Corros. Sci. 53, 4131 (2011)
DOI URL |
[29] |
Y. Sun, E. Haruman, Surf. Coat. Technol. 205, 4280 (2011)
DOI URL |
[1] | Chao Hai, Xuequn Cheng, Cuiwei Du, Xiaogang Li. Role of Martensite Structural Characteristics on Corrosion Features in Ni-Advanced Dual-Phase Low-Alloy Steels [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 802-812. |
[2] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[3] | Iniobong P. Etim, Wen Zhang, Yi Zhang, Lili Tan, Ke Yang. Microstructural Evolution and Biodegradation Response of Mg-2Zn-0.5Nd Alloy During Tensile and Compressive Deformation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 834-844. |
[4] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[5] | Long Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554. |
[6] | Mingxiao Guo, Junrong Tang, Tianzhen Gu, Can Peng, Qiaoxia Li, Chen Pan, Zhenyao Wang. Corrosion Behavior of 316L Stainless Steels Exposed to Salt Lake Atmosphere of Western China for 8 years [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 555-564. |
[7] | Hongchi Ma, Baijie Zhao, Yi Fan, Kui Xiao, Jinbin Zhao, Xuequn Cheng, Xiaogang Li. Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 565-578. |
[8] | Ji-Jin Xu, Shuai Wang, Ze Chai, Chun Yu, Jun-Mei Chen, Hao Lu. Comparison of the Stress Corrosion Cracking Behaviour of AISI 304 Pipes Welded by TIG and LBW [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 579-589. |
[9] | Pengfei Wu, Shengan Wu, Dan Sun, Yougen Tang, Haiyan Wang. A Review of Al Alloy Anodes for Al-Air Batteries in Neutral and Alkaline Aqueous Electrolytes [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(3): 309-320. |
[10] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[11] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[12] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[13] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[14] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[15] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||