Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (5): 729-740.DOI: 10.1007/s40195-020-01116-x
Krishnaswamy Kanagamani1, Pitchaipillai Muthukrishnan2(), Ayyasami Kathiresan2, Karikalan Shankar2, Pandurengan Sakthivel3, Murugan Ilayaraja4
Received:
2020-06-03
Revised:
2020-06-28
Accepted:
2020-07-08
Online:
2021-05-10
Published:
2021-04-30
Contact:
Pitchaipillai Muthukrishnan
About author:
Pitchaipillai Muthukrishnan, mukepmk@gmail.comKrishnaswamy Kanagamani, Pitchaipillai Muthukrishnan, Ayyasami Kathiresan, Karikalan Shankar, Pandurengan Sakthivel, Murugan Ilayaraja. Detoxication and Theranostic Aspects of Biosynthesised Zinc Oxide Nanoparticles for Drug Delivery[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 729-740.
Add to citation manager EndNote|Ris|BibTeX
Element | Wt.% | At.% |
---|---|---|
O | 18.65 | 53 |
Zn | 81.35 | 47 |
Table 1 Weight and atomic percentages of ZnO nanoparticles
Element | Wt.% | At.% |
---|---|---|
O | 18.65 | 53 |
Zn | 81.35 | 47 |
No | Concentration (µg mL-1) | Cell death (DLA) (%) | |
---|---|---|---|
Ficus-mediated ZnO-NPs | Standard drug curcumin | ||
1 | 10 | 19 | 41 |
2 | 20 | 36 | 54.47 |
3 | 50 | 57 | 69.71 |
4 | 100 | 77 | 81.69 |
5 | 200 | 96 | 100 |
Table 2 Anticancer assay of Ficus-mediated ZnO-NPs on DLA cell lines
No | Concentration (µg mL-1) | Cell death (DLA) (%) | |
---|---|---|---|
Ficus-mediated ZnO-NPs | Standard drug curcumin | ||
1 | 10 | 19 | 41 |
2 | 20 | 36 | 54.47 |
3 | 50 | 57 | 69.71 |
4 | 100 | 77 | 81.69 |
5 | 200 | 96 | 100 |
Fig. 8 UV spectrum of photodegradation of Congo red: A different time intervals, B effect of catalytic dosage, C comparison of photodegradation of Congo red, D effect of irradiation time with different loadings of catalyst and E recycle ability of ZnO-NPs
Source | Nanoparticle and size | Pollutant | Light source (UV/visible irradiation) | Percentage degradation (%) | Ref |
---|---|---|---|---|---|
Artocarpus heterophyllus leaf | ZnO-NPs & 10-15 nm | Congo red | UV irradiation | 90 | [ |
Carissa edulis fruit | ZnO-NPs & 50-55 nm | Congo red | UV-Vis irradiation | 97 | [ |
Sea buckthorn fruit | ZnO-NPs & 17.5 nm | Congo red | UV irradiation | 99 | [ |
Averrhoe carrambola fruit | ZnO-NPs & 20 nm | Congo red | UV irradiation | 93 | [ |
Avocado fruit peel | ZnO-NPs & 22-35 nm | Congo red | Solar irradiation | 99 | [ |
ZnSO4∙7H2O and Ag2SO4 | Ag/ZnO & 20-30 nm | Methyl violet (6B) | UV irradiation | 93 | [ |
Zn(CH3COO)2 2H2O + Bamboo charcoal + AgNO3 | ZnO-Ag/BC & 52 nm | Methylene blue | Visible irradiation | 93.95 | [ |
Zn(CH3COO)2 2H2O + Bamboo charcoal + AgNO3 | ZnO-Ag/BC & 52 nm | Malachite green | Visible irradiation | 95.75 | [ |
Ficus hispida leaf | ZnO-NPs & 20-200 nm | Congo red | UV irradiation | 100 | In the present study |
Table 3 Comparison of degradation ability of various biosynthesised ZnO-NPs and doped ZnO-NPs against various water pollutant
Source | Nanoparticle and size | Pollutant | Light source (UV/visible irradiation) | Percentage degradation (%) | Ref |
---|---|---|---|---|---|
Artocarpus heterophyllus leaf | ZnO-NPs & 10-15 nm | Congo red | UV irradiation | 90 | [ |
Carissa edulis fruit | ZnO-NPs & 50-55 nm | Congo red | UV-Vis irradiation | 97 | [ |
Sea buckthorn fruit | ZnO-NPs & 17.5 nm | Congo red | UV irradiation | 99 | [ |
Averrhoe carrambola fruit | ZnO-NPs & 20 nm | Congo red | UV irradiation | 93 | [ |
Avocado fruit peel | ZnO-NPs & 22-35 nm | Congo red | Solar irradiation | 99 | [ |
ZnSO4∙7H2O and Ag2SO4 | Ag/ZnO & 20-30 nm | Methyl violet (6B) | UV irradiation | 93 | [ |
Zn(CH3COO)2 2H2O + Bamboo charcoal + AgNO3 | ZnO-Ag/BC & 52 nm | Methylene blue | Visible irradiation | 93.95 | [ |
Zn(CH3COO)2 2H2O + Bamboo charcoal + AgNO3 | ZnO-Ag/BC & 52 nm | Malachite green | Visible irradiation | 95.75 | [ |
Ficus hispida leaf | ZnO-NPs & 20-200 nm | Congo red | UV irradiation | 100 | In the present study |
[1] | G. Singhal, B. Riju, R.S. Ashish, P.S. Rajendran, Adv. Sci. Eng. Med. 4, 62 (2012) |
[2] | A. Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 87, 454 (2000) |
[3] | E. Hood, Environ. Health Perspect. 112, A740 (2004) |
[4] |
M. Ramzaparra, F.Z. Haque, J. Mater. Res. Technol. 3, 363 (2014)
DOI URL |
[5] |
S. Kalusniak, S. Sadofev, J. Puls, F. Henneberger, Laser Photonics Rev. 3, 233 (2009)
DOI URL |
[6] |
Y. Li, J. Zhang, Laser Photonics Rev. 4, 517 (2010)
DOI URL |
[7] | R.M. Tripathi, A. Saxena, N. Gupta, H. Kapoor, R.P. Singh, Dig. J. Nanomater. Biostruct. 5, 323 (2010) |
[8] |
R. Patakfalvi, I. Dekany, Colloid Polym. Sci. 280, 461 (2010)
DOI URL |
[9] |
L. Rodriguez-Sanchez, M.C. Blanco, M.A. Lopez-Quintela, J. Phys. Chem. B 104, 9683 (2000)
DOI URL |
[10] |
P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, Optik 127, 4854 (2016)
DOI URL |
[11] | R. Sivaraj, P.K. Rahman, P. Rajiv, H. Abdul Salam, R. Venckatesh, Spectrochim. Part A 133, 178 (2014). |
[12] |
M. Nasrollahzadeh, M. Sajjadi, J. Dwadashi, H. Ghafuri, Adv. Colloid Interface Sci. 276, 102103 (2020)
DOI PMID |
[13] |
M. Nasrollahzadeh, S. Mahmoudi-Gom Yek, N. Motahharifar, M.G. Gorab, Chem. Rec. 19, 2436 (2019).
DOI URL |
[14] |
M. Nasrollahzadeh, F. Ghorbannezhad, Z. Issaabadi, S.M. Sajadi, Chem. Rec. 19, 601 (2019)
DOI |
[15] |
M. Bordbar, N. Negahdar, M. Nasrollahzadeh, Sep. Purif. Technol. 191, 295 (2018)
DOI URL |
[16] |
S.S. Momeni, M. Nasrollahzadeh, A. Rustaiyana, J. Colloid Interface Sci. 472, 173 (2016)
DOI URL |
[17] |
M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-Vartooni, J. Colloid Interface Sci. 459, 183 (2015)
DOI PMID |
[18] |
K. Kanagamani, P. Muthukrishnan, M. Ilayaraja, K. Shankar, A. Kathiresan, J. Inorg. Organomet. Polym. Mater. 28, 702 (2018)
DOI URL |
[19] | M. Murali, C. Mahendra, Nagabhushan, N. Rajashekar, M.S. Sudarshana, K.A. Raveesha, K.N. Amruthesh, Spectrochim. Part A 179, 104 (2017). |
[20] |
A. Alkaladi, A. Mohamed Abdelazim, M. Afifi, Int. J. Mol. Sci. 15, 2015 (2014).
DOI PMID |
[21] |
A. Alkaladi, P.A. Arciniegas-Grijalba, M.C Patiñ-Portela, J.P. Mosquera-Sánchez, A. Guerrero-Vargasj, E. Rodríguez-Páez, Appl. Nanosci. 7, 225 (2017)
DOI URL |
[22] |
S.S. Mydeen, R. Raj Kumar, M. Kottaisamy, V.S. Vasantha, J. Saudi Chem. Soc. 24, 393 (2020).
DOI URL |
[23] |
M. Nasrollahzadeh, S.M. Sajadi, RSC Adv. 5, 46240 (2015).
DOI URL |
[24] |
B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, J. Colloid Interface Sci. 493, 85 (2017)
DOI PMID |
[25] |
B. Bhuyan, B. Paul, D. Dhar Purkayastha, S. Sankar Dhar, S. Behera, Mater. Lett. 168, 158 (2016).
DOI URL |
[26] | A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L. Chuo Ann, S. Khadijah, M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7, 219 (2015) |
[27] |
A. Hatamifard, M. Nasrollahzadeh, J. Lipkowski, RSC Adv. 5, 91372 (2015).
DOI URL |
[28] |
M. Maryami, M. Nasrollahzadeh, E. Mehdipour, S.M. Sajadi, Hydrogen Energy 41, 21236 (2016)
DOI URL |
[29] |
S.M. Sajadi, M. Nasrollahzadeh, M. Maham, J. Colloid Interface Sci. 469, 93 (2016)
DOI URL |
[30] |
F. Ijaz, S. Sammia, S.A. Khan, W. Ahmad, S. Zaman, Trop. J. Pharm. Res. 16, 743 (2017)
DOI URL |
[31] |
S.A. Khan, F. Noreen, S. Kanwal, A. Iqbal, G. Hussain, Mater. Sci, Eng. C 82, 46 (2017)
DOI URL |
[32] | S.A. Khan, F. Noreen, S. Kanwal, G. Hussain, Dig. J. Nanomater. Biostruct. 12, 877 (2017) |
[33] |
S.A. Khan, S. Shahid, M.R. Sajid, F. Noreen, S. Kanwal, Int. J. Adv. Res. 5, 925 (2017)
DOI URL |
[34] | S.A. Khan, S. Kanwal, K. Rizwan, S. Shahid, Microb. Pathog. 125C, 366 (2018) |
[35] | S.A. Khan, S. Shahid, S. Kanwal, K. Rizwan, T. Mahmood, K. Ayub, J. Mol. Struct. 1175C, 73 (1175C) |
[36] | S.A. Khan, S. Shahid, S. Jabin, S. Zaman, M.N. Sarwar, Dig. J. Nanomater. Biostruct. 13, 285 (2018) |
[37] |
S.A. Khan, S. Shahid, W. Bashir, S. Kanwal, A. Iqbal, Trop. J. Pharm. Res. 16, 2331 (2017)
DOI URL |
[38] | S.A. Khan, S. Shahid, S. Kanwal, G. Hussain, Dyes Pigm. 148C, 31 (2017) |
[39] | M.A. Qamar, S. Shahid, S.A. Khan, S. Zaman, M.N. Sarwar, Dig. J. Nanomater. Biostruct. 12, 1127 (2017) |
[40] |
K. Prakash, P. Senthilkumar, S. Pandiaraj, K. Saravanakumar, S. Karuthapandian, J. Exp. Nanosci. 11, 1138 (2016)
DOI URL |
[41] |
Z. Belala, M. Jeguirim, M. Belhachemi, F. Addoun, G. Trouve, Desalination 271, 80 (2011)
DOI URL |
[42] |
N.K. Amin, J. Hazard Mater. 165, 52 (2009)
DOI URL |
[43] |
H.R. Pouretedal, S. Sabzevari, Desalin. Water Treat. 28, 247 (2014)
DOI URL |
[44] |
N. Tripathy, R. Ahmad, H. Kuk, J. Photochem. Photobiol. B 161, 312 (2016)
DOI URL |
[45] |
M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung, G. Katona, Mater. Sci. Semicond. Process. 39, 23 (2015)
DOI URL |
[46] |
M. Nagarajan, K. Arumugam, J. Nanobiotechnol. 11, 39 (2013)
DOI URL |
[47] | A.A. Oladiran, I.A. Olabisi, Asian J. Nat. Appl. Sci. 2, 41 (2013) |
[48] | H.R. Nawaz, B.A. Solangi, B. Zehra, U. Nadee, J. Sci. Ind. Res. 2, 164 (2011) |
[49] | M. Sundrarajan, S. Ambika, K. Bharathi, Bharathi, Adv. Powder Technol. 26, 1294 (2015) |
[50] | P.C. Nagajyothi, S. Ju Cha, I. Jun Yang, T.V.M. Sreekanth, K.J. Kim, H.M. Shin, J. Photochem. Photobiol. B 146, 10 (2015). |
[51] | M. Stan, A. Popa, D. Toloman, T.D. Silipas, D.C. Vodnar, Acta Metall. Sin.-Engl. Lett. 29, 228 (2016) |
[52] | R. Meraat, A.A. Ziabari, K. Issazadeh, N. Shadan, K.M. Jalali, Acta Metall. Sin.-Engl. Lett. 29, 601 (2016) |
[53] |
S. Azizi, M.B. Ahmad, F. Namvar, R. Mohamad, Mater. Lett. 116, 275 (2014)
DOI URL |
[54] |
G. Bisht, S. Rayamajhi, Nanobiomedicine 3, 1 (2016)
DOI URL |
[55] |
P.C. Nagajyothi, T.V.M. Sreekanth, C.O. Tettey, Y.I. Jun, S.H. Mook, Bioorganic Med. Chem. Lett. 24, 4298 (2014)
DOI URL |
[56] | J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong, Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 1 (2018) |
[57] |
R.K. Raajshree, D. Brindha, J. Environ. Pathol. Toxicol. Oncol. 37, 103 (2018)
DOI URL |
[58] | M. Vishnu Kiran, S. Murugesan, World J. Pharm. Sci. 2, 926 (2014). |
[59] | C. Vidya, C. Manjunatha, M.N. Megha Rajshekar, M.A.L. Antony Raj, J. Environ, Environ. Chem. Eng. 5, 3172 (2017). |
[60] | J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi, M. Valan Arasu, J. Photochem. Photobiol. B 162, 395 (2016). |
[61] | E.J. Rupa, L. Kaliraj, S. Abid, D.C. Yang, S.K. Jung, Nanomaterials 9, 1692 (2019) |
[62] | S. Chakraborty, J.J. Farida, R. Simon, S. Kasthuri, N. L. M. Averrhoe, Surf. Interfaces 19, 100488 (2020) |
[63] |
K. Murugesan, K. Tareke, M. Gezehegn, M. Kebede, A. Yazi, G. Diyana, J. Inorg. Organomet. Polym. Mater. 29, 1368 (2019)
DOI URL |
[64] | M. Abdus Subhan, M.R. Awal, T. Ahamed, M. Younus, Acta Metall. Sin. -Engl. Lett. 27, 223 (2014) |
[65] | K. Nithyadevi, K. Ravichandran, Acta Metall. Sin. -Engl. Lett. 30, 1249 (2017) |
[66] |
I.S. Ng, T. Chen, R. Lin, X. Zhang, C. Ni, D. Sun, Appl. Microbiol. Biotechnol. 98, 2297 (2014)
DOI URL |
[67] | M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, D. Pathinettam Padiyan, J. Exp. Nanosci. 11, 1074 (2016). |
[68] | H. Narayan, H. Alemu, J. Phys.: Conf. Ser. 829, 1 (2017) |
[69] |
M. Nasrollahzadeh, M. Bagherzadeh, H. Karimi, J. Colloid Interface Sci. 465, 271 (2016)
DOI PMID |
[70] |
Z. Issaabadi, M. Nasrollahzade, S.M. Sajadi, J. Cleaner Prod. 142, 3584 (2017)
DOI URL |
[71] |
A. Hatamifard, M. Nasrollahzadeh, S.M. Sajadib, New J. Chem. 40, 2501 (2016)
DOI URL |
[72] | M. Nasrollahzadeh, Z. Issaabadia, S.M. Sajadib, Compos. B 166, 112 (2019) |
[73] |
M. Nasrollahzadeh, Z. Issaabadia, H.R. Dasmeh, H.M. Sajadi, J. Alloys Compd. 763, 1024 (2018)
DOI URL |
[1] | K. Nithiyadevi, K. Ravichandran. Enhancement of Photocatalytic and Antibacterial Activities of ZnO:Ag Nanopowders Through the Addition of Bamboo Charcoal: An Efficient Natural Adsorbent [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1249-1256. |
[2] | Manuela Stan, Adriana Popa, Dana Toloman, Teofil-Danut Silipas, Dan Cristian Vodnar. Antibacterial and Antioxidant Activities of ZnO Nanoparticles Synthesized Using Extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(3): 228-236. |
[3] | Hua Chen, Guo-Hua Jiang, Yong-Kun Liu, Lei Li, Qin Huang, Wen-Xing Chen. Preparation of Mesoporous Bi4(GeO4)3 Microspheres from Na4Ge9O20 Template Microspheres for Photodegradation of Reactive Brilliant Red X-3B [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1156-1161. |
[4] | Başak Doğru Mert, Birgül Yazıcı. Visible Light Photocatalysis of Ni-Deposited TiO2 Nanotubes for Methyl Orange Degradation in Alkaline Medium [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(7): 858-865. |
[5] | Guo-Hua Jiang, Xia Li, Zhen Wei, Teng-Teng Jiang, Xiang-Xiang Du, Wen-Xing Chen. Effects of N and/or S Doping on Structure and Photocatalytic Properties of BiOBr Crystals [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 460-466. |
[6] | M. Jay Chithra, M. Sathya, K. Pushpanathan. Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 394-404. |
[7] | Suresh Palla, Ravinder Guje, G. Ravi, Radha Velchuri, M. Vithal. Enhanced Photocatalytic Activity of N-doped Li2VPO6 Under Visible Light Irradiation [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 216-222. |
[8] | Zhe Chen, Wu Wang, Kaigui Zhu. Controllable Synthesis of WO3 Nanowires by Electrospinning and Their Photocatalytic Properties Under Visible Light Irradiation [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 1-6. |
[9] | Bolin Tang, Guohua Jiang, Zhen Wei, Xia Li, Xiaohong Wang, Tengteng Jiang, Wenxing Chen, Junmin Wan. Preparation of N-Doped Bi2WO6 Microspheres for Efficient Visible Light-Induced Photocatalysis [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 124-130. |
[10] | Haijin Liu, Yingling Wang, Guoguang Liu, Yuan Ren, Nan Zhang, Gang Wang, Tong Li. An Energy-Efficient Electrochemical Method for CuO–TiO2 Nanotube Array Preparation with Visible-Light Responses [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 149-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||