Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (4): 445-454.DOI: 10.1007/s40195-020-01150-9
Chenliang Chu1, Weiping Chen1, Zhen Chen1,2, Zhenfei Jiang1, Hao Wang1, Zhiqiang Fu1()
Received:
2020-06-09
Revised:
2020-08-05
Accepted:
2020-08-14
Online:
2021-04-10
Published:
2021-03-30
Contact:
Zhiqiang Fu
About author:
Zhiqiang Fu, zhiqiangfu2019@scut.edu.cn; kopyhit@163.comChenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Bright-field (BF) TEM images of bulk FeNiCoCr HEA: a low-magnified image; b high-magnified image and SAED pattern corresponding to grain A (FCC); c high-magnified image and SAED pattern corresponding to grain B1 (Cr23C6); d nanotwinned grain G
Alloys | Regions | Fe | Ni | Co | Cr | Mn | C | O |
---|---|---|---|---|---|---|---|---|
FeNiCoCr | Nominal composition | 25 | 25 | 25 | 25 | - | - | - |
FCC (A) | 25.4±0.8 | 27.0±1.1 | 27.7±0.9 | 19.9±0.8 | - | - | - | |
Carbide phase (B) | 8.8±0.3 | 4.5±1.3 | 5.8±1.1 | 62±3.6 | - | 18.8±2.6 | - | |
Oxide phase (C) | 2.1±1.1 | 2.5±1.3 | 2.6±1.5 | 34.1±5.9 | - | - | 58.7±4.8 | |
FeNiCoCrMn | Nominal composition | 20 | 20 | 20 | 20 | 20 | - | - |
FCC (D) | 21.9±0.8 | 21.0±1.1 | 20.8±0.9 | 16.2±1.1 | 20.1±1.3 | - | - | |
Carbide phase (E) | 3.2±0.2 | 1.2±0.1 | 1.8±0.1 | 43.7±2.6 | 30.8±1.2 | 19.3±3.1 | - | |
Oxide phase (F) | 1.0±0.2 | 0.7±0.3 | 0.5±0.2 | 19.9±5.5 | 14.4±3.2 | - | 63.5±6.2 |
Table 1 Chemical compositions (at.%) of the bulk FeNiCoCr and FeNiCoCrMn HEAs analyzed by EDS/TEM
Alloys | Regions | Fe | Ni | Co | Cr | Mn | C | O |
---|---|---|---|---|---|---|---|---|
FeNiCoCr | Nominal composition | 25 | 25 | 25 | 25 | - | - | - |
FCC (A) | 25.4±0.8 | 27.0±1.1 | 27.7±0.9 | 19.9±0.8 | - | - | - | |
Carbide phase (B) | 8.8±0.3 | 4.5±1.3 | 5.8±1.1 | 62±3.6 | - | 18.8±2.6 | - | |
Oxide phase (C) | 2.1±1.1 | 2.5±1.3 | 2.6±1.5 | 34.1±5.9 | - | - | 58.7±4.8 | |
FeNiCoCrMn | Nominal composition | 20 | 20 | 20 | 20 | 20 | - | - |
FCC (D) | 21.9±0.8 | 21.0±1.1 | 20.8±0.9 | 16.2±1.1 | 20.1±1.3 | - | - | |
Carbide phase (E) | 3.2±0.2 | 1.2±0.1 | 1.8±0.1 | 43.7±2.6 | 30.8±1.2 | 19.3±3.1 | - | |
Oxide phase (F) | 1.0±0.2 | 0.7±0.3 | 0.5±0.2 | 19.9±5.5 | 14.4±3.2 | - | 63.5±6.2 |
Fig. 3 Bright-field (BF) TEM images of bulk FeNiCoCrMn HEA: a low-magnified image; b high-magnified image and SAED pattern corresponding to grain D (FCC); c high-magnified image and SAED pattern corresponding to grain E1 ((Cr,Mn)23C6); d nanotwinned grain H and its corresponding SAED pattern
Element (atomic radii, Å) | C | Fe | Ni | Co | Cr | Mn |
---|---|---|---|---|---|---|
C (0.77) | - | -50 | -39 | -42 | -61 | -66 |
Fe (1.27) | - | - | -2 | -1 | -1 | 0 |
Ni (1.25) | - | - | - | 0 | -7 | -8 |
Co (1.26) | - | - | - | - | -4 | -5 |
Cr (1.28) | - | - | - | - | - | 2 |
Mn (1.29) | - | - | - | - | - | - |
Table 2 Mixing enthalpy ($\Delta H_{ij}^{\text{mix}}$, kJ mol-1) of different atom pairs calculated by Miedemas model [3, 34]
Element (atomic radii, Å) | C | Fe | Ni | Co | Cr | Mn |
---|---|---|---|---|---|---|
C (0.77) | - | -50 | -39 | -42 | -61 | -66 |
Fe (1.27) | - | - | -2 | -1 | -1 | 0 |
Ni (1.25) | - | - | - | 0 | -7 | -8 |
Co (1.26) | - | - | - | - | -4 | -5 |
Cr (1.28) | - | - | - | - | - | 2 |
Mn (1.29) | - | - | - | - | - | - |
Fig. 4 Statistical grain diameter distribution histogram: a grain size distribution histogram of bulk FeNiCoCr with an average grain diameter of 416 nm; b grain size distribution histogram of bulk FeNiCoCrMn with an average grain diameter of 547 nm
Alloys | Process | σ0.2 (MPa) | σmax (MPa) | εf (%) | Hardness (HV) | References |
---|---|---|---|---|---|---|
FeNiCoCr | MA and SPS | 1525 | 1987 | 24.4 | 465 | This work |
FeNiCoCrMn | MA and SPS | 1329 | 1761 | 21.9 | 407 | This work |
FeNiCoCr | MA and SPS | 657 | - | > 50 | - | [ |
FeNiCoCrMn | MA and SPS | 700a | 762a | 9.8a | 314 | [ |
FeNiCoCr | Arc-melting and casting | 140a | 488a | 83a | 160 | [ |
FeNiCoCrMn | Arc-melting and casting | 215a | 491a | 71a | 170 | [ |
Table 3 Mechanical properties of FeNiCoCr and FeNiCoCrMn HEAs prepared by various methods at room temperature
Alloys | Process | σ0.2 (MPa) | σmax (MPa) | εf (%) | Hardness (HV) | References |
---|---|---|---|---|---|---|
FeNiCoCr | MA and SPS | 1525 | 1987 | 24.4 | 465 | This work |
FeNiCoCrMn | MA and SPS | 1329 | 1761 | 21.9 | 407 | This work |
FeNiCoCr | MA and SPS | 657 | - | > 50 | - | [ |
FeNiCoCrMn | MA and SPS | 700a | 762a | 9.8a | 314 | [ |
FeNiCoCr | Arc-melting and casting | 140a | 488a | 83a | 160 | [ |
FeNiCoCrMn | Arc-melting and casting | 215a | 491a | 71a | 170 | [ |
Alloys | Parameters | Physical meaning | Value | Unit | References |
---|---|---|---|---|---|
FeNiCoCr | σ0 | Friction stress | 175 | MPa | [ |
ky | Hall-Petch coefficient | 855 | MPa μm-0.5 | [ | |
G | Shear modulus | 82 | GPa | [ | |
b | Magnitude of the Burgers vector | 0.251 | nm | [ | |
FeNiCoCrMn | σ0 | Friction stress | 125 | MPa | [ |
ky | Hall-Petch coefficient | 494 | MPa μm-0.5 | [ | |
G | Shear modulus | 80 | GPa | [ | |
b | Magnitude of the Burgers vector | 0.258 | nm | [ |
Table 4 Physical meaning and values of parameters used for the FeNiCoCr and FeNiCoCrMn HEAs in estimating strengthening mechanisms
Alloys | Parameters | Physical meaning | Value | Unit | References |
---|---|---|---|---|---|
FeNiCoCr | σ0 | Friction stress | 175 | MPa | [ |
ky | Hall-Petch coefficient | 855 | MPa μm-0.5 | [ | |
G | Shear modulus | 82 | GPa | [ | |
b | Magnitude of the Burgers vector | 0.251 | nm | [ | |
FeNiCoCrMn | σ0 | Friction stress | 125 | MPa | [ |
ky | Hall-Petch coefficient | 494 | MPa μm-0.5 | [ | |
G | Shear modulus | 80 | GPa | [ | |
b | Magnitude of the Burgers vector | 0.258 | nm | [ |
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[2] |
W.R. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61 2 (2018)
DOI URL |
[3] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122 448 (2017)
DOI URL |
[4] |
L. Moravcikova-Gouvea, I. Moravcik, M. Omasta, J. Vesely, J. Cizek, P. Minarik, J. Cupera, A. Zadera, V. Jan, I. Dlouhy, Mater. Charact. 159 110046 (2020)
DOI URL |
[5] | C.G. Schön, M.A. Tunes, R. Arróyave, J. Ågren, CALPHAD: Comput. Coupling Phase Diagr. Thermochem. 68 101713 (2020) |
[6] |
Z.Q. Fu, W.P. Chen, H.M. Wen, D.L. Zhang, Z. Chen, B.L. Zheng, Y.Z. Zhou, E.J. Lavernia, Acta Mater. 107 59 (2016)
DOI URL |
[7] | S.Y. Chen, W.D. Li, X. Xie, J. Brechtl, B.L. Chen, P.Z. Li, G.F. Zhao, F.Q. Yang, J.W. Qiao, K.A. Dahmen, P.K. Liaw, J. Alloys Compd. 752 464 (2018) |
[8] |
W. Kai, F.P. Cheng, F.C. Chien, Y.R. Lin, D. Chen, J.J. Kai, C.T. Liu, C.J. Wang, Corros. Sci. 158 108093 (2019)
DOI URL |
[9] |
N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, S.J. Zinkle, Acta Mater. 113 230 (2016)
DOI URL |
[10] |
Z. Li, S. Zhao, S.M. Alotaibi, Y. Liu, B. Wang, M.A. Meyers, Acta Mater. 151 424 (2018)
DOI URL |
[11] | T. Zuo, M. Zhang, P.K. Liaw, Y. Zhang, Intermetallics 100, 1 (2018) |
[12] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng., A, 375 213 (2004) |
[13] |
M. Vaidya, K. Guruvidyathri, B.S. Murty, J. Alloys Compd. 774 856 (2019)
DOI URL |
[14] | M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E. Leroy, Y. Champion, Acta Mater. 88 355 (2015) |
[15] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science, 345 1153 (2014)
URL PMID |
[16] | M. Naeem, H.Y. He, F. Zhang, H.L. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z.D. Wu, F. Wang, Y. Wu, Z.P. Lu, Z.W. Zhang, C.T. Liu, X.L. Wang, Sci. Adv. 6 4002 (2020) |
[17] | G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloys Compd. 591 11 (2014) |
[18] | B.S. Murty, S. Ranganathan, Int. Mater. Rev. 43 101 (1998) |
[19] | A.S. Sharma, S. Yadav, K. Biswas, B. Basu, Mater. Sci. Eng., R 131, 1 (2018) |
[20] |
Z.F. Jiang, W.P. Chen, Z.B. Xia, W. Xiong, Z.Q. Fu, Intermetallics 108, 45 (2019)
DOI URL |
[21] | Y.H. Guo, M.Y. Li, P. Li, C.G. Chen, Q. Zhan, Y.Q. Chang, Y.W. Zhang, J. Alloys Compd. 820 153104 (2020) |
[22] |
P. Sathiyamoorthi, J. Basu, S. Kashyap, K.G. Pradeep, R.S. Kottada, Mater. Des. 134 426 (2017)
DOI URL |
[23] | M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, B.S. Murty, J. Alloys Compd. 791 1114 (2019) |
[24] | Z.Q. Fu, W.P. Chen, S.C. Fang, X.M. Li, Mater. Sci. Eng., A 597, 204 (2014) |
[25] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater Sci. 61 1 (2014)
DOI URL |
[26] | K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, J. Alloys Compd. 485 L31 (2009) |
[27] | S. Praveen, B.S. Murty, R.S. Kottada, JOM 65, 1797 (2013) |
[28] |
T.T. Shun, Y.C. Du, J. Alloys Compd. 478 269 (2009)
DOI URL |
[29] |
S.C. Fang, W.P. Chen, Z.Q. Fu, Mater. Des. 54 973 (2014)
DOI URL |
[30] | J.Y. Pang, T. Xiong, X. Wei, Z.W. Zhu, B. Zhang, Y.T. Zhou, X.H. Shao, Q.Q. Jin, S.J. Zheng, X.L. Ma, Materialia 6, 100275 (2019) |
[31] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 5743 (2013)
DOI URL PMID |
[32] | A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65, 1780 (2013) |
[33] |
Z.Q. Fu, W.P. Chen, S.C. Fang, D.Y. Zhang, H.Q. Xiao, D.Z. Zhu, J. Alloys Compd. 553 316 (2013)
DOI URL |
[34] | A. Takeuchi, A. Inoue, Mater. Trans. 46 2817 (2005) |
[35] | S.R. Shatynski, Oxid. Met. 13 105 (1979) |
[36] | J.O. Andersson, CALPHAD: Comput. Coupling Phase Diagr. Thermochem. 11 271 (1987) |
[37] | W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, J.J. Kai, Corros. Sci. 108 209 (2016) |
[38] | M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, J. Alloys Compd. 688 994 (2016) |
[39] | B. Jia, X.J. Liu, H. Wang, Y. Wu, Z.P. Lu, Sci. China: Technol. Sci. 61 179 (2018) |
[40] | Y. Liu, J.S. Wang, Q.H. Fang, B. Liu, Y. Wu, S.Q. Chen, Intermetallics 68, 16 (2016) |
[41] | M.V. Klimova, D.G. Shaysultanov, S.V. Zherebtsov, N.D. Stepanov, Mater. Sci. Eng., A 748, 228 (2019) |
[42] |
M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Sci. Rep. 7 12293 (2017)
URL PMID |
[43] | S. Praveen, J. Basu, S. Kashyap, R.S. Kottada, J. Alloys Compd. 662 361 (2016) |
[44] |
K.B. Alexander, P.F. Becher, S.B. Waters, A. Bleier, J. Am. Ceram. Soc. 77 939 (1994)
DOI URL |
[45] | N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, D.M. Ikornikov, V.N. Sanin, Mater. Sci. Eng., A 728, 54 (2018) |
[46] | N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, M.A. Tikhonovsky, S.V. Zherebtsov, J. Alloys Compd. 770 194 (2019) |
[47] |
J.A. Peng, Z.Y. Li, L.M. Fu, X.B. Ji, Z.R. Pang, A.D. Shan, J. Alloys Compd. 803 491 (2019)
DOI URL |
[48] |
B. Liu, J.S. Wang, Y. Liu, Q.H. Fang, Y. Wu, S.Q. Chen, C.T. Liu, Intermetallics 75, 25 (2016)
DOI URL |
[49] | Z.G. Wu, Y.F. Gao, H.B. Bei, Acta Mater. 120 108 (2016) |
[1] | Long Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554. |
[2] | Li-Li Zhang, Jie Song, Sajjad Ur Rehman, Jia-Jie Li, Lei Wang, Mu-Nan Yang, Ren-Hui Liu, Qing-Zheng Jiang, Zhen-Chen Zhong. Uneven Evolution of Microstructure, Magnetic Properties and Coercivity Mechanism of Mo-Substituted Nd-Ce-Fe-B Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 590-596. |
[3] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[4] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[5] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[6] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[7] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[8] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[9] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[10] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[11] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[12] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[13] | Shikai Wu, Wei Gao, Tao Lu, Ye Pan. Co-Free High-Entropy Alloys Powders Immobilized by Electrospray and Microfluidics for Decolorization of Azo Dye [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1103-1110. |
[14] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[15] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||