Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (1): 25-38.DOI: 10.1007/s40195-020-01168-z
Previous Articles Next Articles
Zheng-Zheng Yin1, Zhao-Qi Zhang1, Xiu-Juan Tian1, Zhen-Lin Wang1,2, Rong-Chang Zeng1,3()
Received:
2020-08-01
Revised:
2020-10-20
Accepted:
2020-10-27
Online:
2021-01-10
Published:
2021-01-28
Contact:
Rong-Chang Zeng
Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38.
Add to citation manager EndNote|Ris|BibTeX
Liquids | $\gamma_{L}$ | $gamma_{L}^{LW}$ | $\gamma_{L}^{ + }$ | $\gamma_{L}^{ - }$ |
---|---|---|---|---|
Diiodomethane | 50.8 | 50.8 | 0 | 0 |
Glycol | 48.0 | 29.0 | 1.92 | 47.0 |
Water | 72.8 | 21.8 | 25.5 | 25.5 |
Table 1 Surface energy parameters (γ) of three liquids phase (mJ m-2) [38]
Liquids | $\gamma_{L}$ | $gamma_{L}^{LW}$ | $\gamma_{L}^{ + }$ | $\gamma_{L}^{ - }$ |
---|---|---|---|---|
Diiodomethane | 50.8 | 50.8 | 0 | 0 |
Glycol | 48.0 | 29.0 | 1.92 | 47.0 |
Water | 72.8 | 21.8 | 25.5 | 25.5 |
Fig. 1 a SEM image and b its magnified one of the prepared superhydrophobic coating; c EDS results of selected points in a; d cross-sectional morphology, e-h corresponding elements mapping images
Fig. 4 a FTIR spectra and b XRD results of the AZ31 substrate, myristic acid (MA) and coated samples as well as immersed AZ31 (I-AZ31) and coating (I-coating)
Sample | Mg | Mg(OH)2 | CM |
---|---|---|---|
AZ31 | 100 | - | - |
I-AZ31 | 27.72 | 72.28 | - |
Coating | 71.05 | - | 28.95 |
I-coating | 73.37 | 0.58 | 26.05 |
Table 2 Volume fractions (vol%) of each phase in XRD patterns
Sample | Mg | Mg(OH)2 | CM |
---|---|---|---|
AZ31 | 100 | - | - |
I-AZ31 | 27.72 | 72.28 | - |
Coating | 71.05 | - | 28.95 |
I-coating | 73.37 | 0.58 | 26.05 |
Fig. 5 Electrochemical results of a Nyquist, b Bode plots of Zmod, c Bode plots of phase angle and corresponding EC models of the d AZ31 substrate, e coated sample; f potentiodynamic polarization curves of the AZ31 substrate and coating in 3.5% NaCl
Sample | Rs (Ω cm2) | CPEf (Ω-1 sn cm-2) | n | Rf (Ω cm2) | CPE1 (Ω-1 sn cm-2) | n | Rct (Ω cm2) | RL (Ω cm2) | L (H cm2) |
---|---|---|---|---|---|---|---|---|---|
AZ31 | 22.03 | - | - | - | 1.53 × 10-5 | 0.91 | 1.41 × 102 | 58.28 | 67.30 |
Coating | 1.03 × 103 | 1.90 × 10-10 | 0.98 | 1.72 × 105 | 7.57 × 10-8 | 0.53 | 1.49 × 105 | 1.21 × 10-2 | 6.70 × 106 |
Table 3 Equivalent circuit fitting results of the EIS date
Sample | Rs (Ω cm2) | CPEf (Ω-1 sn cm-2) | n | Rf (Ω cm2) | CPE1 (Ω-1 sn cm-2) | n | Rct (Ω cm2) | RL (Ω cm2) | L (H cm2) |
---|---|---|---|---|---|---|---|---|---|
AZ31 | 22.03 | - | - | - | 1.53 × 10-5 | 0.91 | 1.41 × 102 | 58.28 | 67.30 |
Coating | 1.03 × 103 | 1.90 × 10-10 | 0.98 | 1.72 × 105 | 7.57 × 10-8 | 0.53 | 1.49 × 105 | 1.21 × 10-2 | 6.70 × 106 |
Fig. 6 Hydrogen evolution results of a pH value, b hydrogen evolution volume (HEV), c average hydrogen evolution rate (HERa), d instantaneous hydrogen evolution rate (HERi) in 3.5% NaCl solutionFull size image
Method/coating type | Substrate | Middle layer | Superhydrophobic layer | References |
---|---|---|---|---|
MAO + electrodeposition | 3.55 × 10-5 | 8.36 × 10-6 | 7.68 × 10-8 | [ |
MAO + soak | 4.21 × 10-4 | 1.13 × 10-6 | 2.35 × 10-7 | [ |
MAO + soak (multiple-cycle assembly) | 2.1 × 10-5 | 8.2 × 10-7 | 3.5 × 10-8 | [ |
Hydrothermal (Mg(OH)2) + soak | 1.62 × 10-5 | - | 1.72 × 10-7 | [ |
LDH + electrodeposition | 9 × 10-5 | 4 × 10-5 | 4 × 10-6 | [ |
Electrodeposition (CeO2) + soak | 4.71 × 10-4 | 5.43 × 10-5 | 1.14 × 10-6 | [ |
Table 4 Corrosion resistance of superhydrophobic coatings (icorr, A cm-2) prepared by two-step method (the best results among different parameters)
Method/coating type | Substrate | Middle layer | Superhydrophobic layer | References |
---|---|---|---|---|
MAO + electrodeposition | 3.55 × 10-5 | 8.36 × 10-6 | 7.68 × 10-8 | [ |
MAO + soak | 4.21 × 10-4 | 1.13 × 10-6 | 2.35 × 10-7 | [ |
MAO + soak (multiple-cycle assembly) | 2.1 × 10-5 | 8.2 × 10-7 | 3.5 × 10-8 | [ |
Hydrothermal (Mg(OH)2) + soak | 1.62 × 10-5 | - | 1.72 × 10-7 | [ |
LDH + electrodeposition | 9 × 10-5 | 4 × 10-5 | 4 × 10-6 | [ |
Electrodeposition (CeO2) + soak | 4.71 × 10-4 | 5.43 × 10-5 | 1.14 × 10-6 | [ |
Fig. 8 a Nanoscratch test of the coating; b water static contact angles, c-f mean values of surface roughness of superhydrophobic coating under different immersion time of 0 days, 1 days, 7 days and 13 days in 3.5% NaCl solution
Fig. 10 Electrochemical results of a Nyquist, b Bode plots of Zmod, c Bode plots of phase angle of the coating after immersion in 3.5% NaCl solution for a few days
Immersion time (days) | Rs (Ω cm2) | CPEf (Ω-1 sn cm-2) | n | Rf (Ω cm2) | CPE1 (Ω-1 sn cm-2) | n | Rct (Ω cm2) | RL (Ω cm2) | L (H cm2) | |Z| (Ω cm2) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.74 × 103 | 2.93 × 10-10 | 0.85 | 1.12 × 104 | 1.06 × 10-5 | 0.54 | 3.82 × 104 | 5.51 × 104 | 8.99 × 105 | 3.81 × 104 |
3 | 1.67 × 103 | 8.93 × 10-9 | 0.77 | 1.21 × 104 | 8.40 × 10-6 | 0.57 | 2.30 × 104 | 3.33 × 10-2 | 2.20 × 106 | 3.50 × 104 |
5 | 1.55 × 103 | 1.78 × 10-9 | 0.87 | 4.13 × 103 | 2.90 × 10-5 | 0.45 | 1.20 × 104 | - | - | 1.65 × 104 |
7 | 3.60 × 102 | 2.05 × 10-6 | 0.57 | 3.04 × 103 | 2.83 × 10-5 | 0.80 | 5.76 × 103 | - | - | 9.70 × 103 |
Table 5 Equivalent circuit fitting results of the EIS date after immersion
Immersion time (days) | Rs (Ω cm2) | CPEf (Ω-1 sn cm-2) | n | Rf (Ω cm2) | CPE1 (Ω-1 sn cm-2) | n | Rct (Ω cm2) | RL (Ω cm2) | L (H cm2) | |Z| (Ω cm2) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.74 × 103 | 2.93 × 10-10 | 0.85 | 1.12 × 104 | 1.06 × 10-5 | 0.54 | 3.82 × 104 | 5.51 × 104 | 8.99 × 105 | 3.81 × 104 |
3 | 1.67 × 103 | 8.93 × 10-9 | 0.77 | 1.21 × 104 | 8.40 × 10-6 | 0.57 | 2.30 × 104 | 3.33 × 10-2 | 2.20 × 106 | 3.50 × 104 |
5 | 1.55 × 103 | 1.78 × 10-9 | 0.87 | 4.13 × 103 | 2.90 × 10-5 | 0.45 | 1.20 × 104 | - | - | 1.65 × 104 |
7 | 3.60 × 102 | 2.05 × 10-6 | 0.57 | 3.04 × 103 | 2.83 × 10-5 | 0.80 | 5.76 × 103 | - | - | 9.70 × 103 |
[1] | T. Tokunaga, M. Ohno, K. Matsuura , J. Mater. Sci. Technol. 34, 1119( 2018) |
[2] | S. Jayasathyakawin, M. Ravichandran, N. Baskar, C.A. Chairman, R. Balasundaram , Mater. Today Proc. 27, 909( 2020) |
[3] | R.C. Zeng, Y. Shao, S.Q. Li, L.Y. Cui, Y.H. Zou, S.K. Guan, Y.F. Zheng , Acta Metall. Sin. -Engl. Lett. 33, 615( 2020) |
[4] | R. Chalisgaonkar , Mater. Today Proc. 26, 1060( 2020) |
[5] | R.G. Hu, S. Zhang, J.F. Bu, C.J. Lin, G.L. Song , Prog. Org. Coat. 73, 129( 2012) |
[6] | J.H. Wang, L. Xu, R.Z. Wu, J. Feng, J.H. Zhang, L.G. Hou, M.L. Zhang , Acta Metall. Sin. -Engl. Lett. 33, 490( 2020) |
[7] | Z.Q. Qian, S.D. Wang, X.S. Ye, Z. Liu, Z.J. Wu , Appl. Surf. Sci. 453, 1( 2018) |
[8] |
L.Y. Cui, S.C. Cheng, L.X. Liang, J.C. Zhang, S.Q. Li, Z.L. Wang, R.C. Zeng , Bioact. Mater. 5, 153( 2020)
DOI URL PMID |
[9] | H. Liu, H. Huang, J.P. Sun, C. Wang, J. Bai, A.B. Ma, X.H. Chen , Acta Metall. Sin. -Engl. Lett. 32, 269( 2019) |
[10] | M. Yeganeh, N. Mohammadi , J. Magnesium Alloys 6, 59 ( 2018) |
[11] | Z.Z. Yin, W.C. Qi, R.C. Zeng, X.B. Chen, C.D. Gu, S.K. Guan, Y.F. Zheng , J. Magnesium Alloys 8, 42 ( 2020) |
[12] | S. Pourhashem, F. Saba, J. Duan, A. Rashidi, F. Guan, E.G. Nezhad, B. Hou , J. Ind. Eng. Chem. 88, 29( 2020) |
[13] | V.S. Saji , J. Mater. Res. Technol. 8, 5012( 2019) |
[14] | Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, Q.Y. Shi , Corros. Sci. 138, 284( 2018) |
[15] | Y.K. Wei, Y.J. Li, Y. Zhang, X.T. Luo, C.J. Li , Corros. Sci. 138, 105( 2018) |
[16] | M.A.F. Zaludin, Z.A. Zahid Jamal, M.N. Derman, M.Z. Kasmuin, J. Mater. Res. Technol. 8, 981( 2019) |
[17] | J. Jayaraj, K.R. Rajesh, S.A. Raj, A. Srinivasan, S. Ananthakumar, N.G.K. Dhaipule, S.K. Kalpathy, U.T.S. Pillai, U.K. Mudali , J. Alloys Compd. 784, 1162( 2019) |
[18] | C.Y. Li, X.L. Fan, L.Y. Cui, R.C. Zeng , Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31. Corros. Sci.(2020). https://doi.org/10.1016/j.corsci.2020.108570 |
[19] | H.H. Elsentriecy, H. Luo, H.M. Meyer, L.L. Grado, J. Qu , Electrochim. Acta 123, 58 ( 2014) |
[20] | J.H. Gao, X.Y. Shi, B. Yang, S.S. Hou, E.C. Meng, F.X. Guan, S.K. Guan , J. Mater. Sci. Mater. Med. 22, 1681( 2011) |
[21] | A. Monfared, A. Ghaee, S. Ebrahimi-Barough , Colloids Surf. B 170, 617 ( 2018) |
[22] |
A.B. Ikhe, A.B. Kale, J. Jeong, M.J. Reece, S.H. Choi, M. Pyo , Corros. Sci. 109, 238( 2016)
DOI URL |
[23] | A. Hooda, M.S. Goyat, J.K. Pandey, A. Kumar, R. Gupta , constraints and fabrication techniques of superhydrophobic coatings. Prog. Org. Coat.(2020). https://doi.org/10.1016/j.porgcoat.2020.105557 |
[24] |
B.B. Zhang, J.R. Li, X. Zhao, X.H. Hu, L.H. Yang, N. Wang, Y.T. Li, B.R. Hou , Chem. Eng. J. 306, 441( 2016)
DOI URL |
[25] |
Y. Liu, J.Z. Xue, D. Luo, H.Y. Wang, X. Gong, Z.W. Han, L.Q. Ren , J. Colloid Interface Sci. 491, 313( 2017)
DOI URL PMID |
[26] | D.W. Zhang, L. Wang, H.C. Qian, X.G. Li , J. Coat. Technol. Res. 13, 11( 2016) |
[27] | X. Li, S. Yin, S. Huang, H. Luo, Q. Tang , Vacuum 173, 109172 ( 2020) |
[28] |
X.J. Cui, X.Z. Lin, C.H. Liu, R.S. Yang, X.W. Zheng, M. Gong , Corros. Sci. 90, 402( 2015)
DOI URL |
[29] | Z.Q. Zhang, R.C. Zeng, C.G. Lin, L. Wang, X.B. Chen, D.C. Chen , J. Mater. Sci. Technol. 41, 43( 2020) |
[30] | T.X. Zheng, Y.B. Hu, F.S. Pan, Y.X. Zhang, A. Tang , J. Magnesium Alloys 7, 193 ( 2019) |
[31] | Z.X. Kang, W. Li , J. Ind. Eng. Chem. 50, 50( 2017) |
[32] | Z.X. Wang, G.Q. Chen, L.Y. Chen, L. Xu, S. Lu , Metals 8, 724 ( 2018) |
[33] | R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, M.R. Raza, Mater. Sci. Eng. C 77, 1261 ( 2017) |
[34] | W.H. Yao, W. Liang, G.S. Huang, B. Jiang, A. Atrens, F.S. Pan , J. Mater. Sci. Technol. 52, 100( 2020) |
[35] |
L.C. Zhang, L.Y. Chen, L.Q. Wang, Surface modification of titanium and titanium alloys: technologies, developments, future interests. Adv. Eng. Mater.(2020). https://doi.org/10.1002/adem.201901258
DOI URL PMID |
[36] |
C.D. Ding, Y. Tai, D. Wang, L.H. Tan, J.J. Fu , Chem. Eng. J. 357, 518( 2019)
DOI URL |
[37] | J. Kuang, Z.X. Ba, Z.Z. Li, Y.Q. Jia, Z.Z. Wang , Surf. Coat. Technol. 361, 75( 2019) |
[38] | Z.Q. Zhang, R.C. Zeng, W. Yan, C.G. Lin, L. Wang, Z.L. Wang, D.C. Chen , Corrosion resistance of one-step superhydrophobic polypropylene coating on magnesium hydroxide-pretreated magnesium alloy AZ31. J. Alloys Compd.(2020). https://doi.org/10.1016/j.jallcom.2019.153515 |
[39] | C.J. Van Oss, M.K. Chaudhury, R.J. Good, Chem. Rev. 88, 927( 1988) |
[40] | L.Y. Cui, S.D. Gao, P.P. Li, R.C. Zeng, F. Zhang, S.Q. Li, E.H. Han , Corros. Sci. 118, 84( 2017) |
[41] | B. Liu, X. Zhang, G.Y. Xiao, Y.P. Lu , Mater. Sci. Eng. C 47, 97 ( 2015) |
[42] | L. Zhang, J. Zhang, C.F. Chen, Y. Gu , Corros. Sci. 91, 7( 2015) |
[43] |
S. Tang, Y. Zhang, H. San, J. Hu , Hydrophobic surface contained Ca and/or Ce myristate fabricated on AZ31 by one-step electrodeposition for corrosion protection in NaCl. Appl. Surf. Sci.(2019). https://doi.org/10.1016/j.apsusc.2019.143627
DOI URL PMID |
[44] | L.Y. Chen, T.X. Xu, S. Lu, Z.X. Wang, S.J. Chen, L.C. Zhang , Surf. Coat. Technol. 350, 436( 2018) |
[45] | L.C. Zhang, Z.Q. Shen, J. Xu , J. Mater. Sci. Res. 18, 2141 ( 2003) |
[46] | Y. Liu, X.M. Yin, J.J. Zhang, S.R. Yu, Z.W. Han, L.Q. Ren , Electrochim. Acta 125, 395 ( 2014) |
[47] | L.Y. Cui, H.P. Liu, W.L. Zhang, Z.Z. Han, M.X. Deng, R.C. Zeng, S.Q. Li, Z.L. Wang , J. Mater. Sci. Technol. 33, 1263( 2017) |
[48] | A.H. Liu, J.L. Xu , Trans. Nonferrous Met. Soc. China 28, 2287 ( 2018) |
[49] | D. Jiang, H. Zhou, S. Wan, G.Y. Cai, Z.H. Dong , Surf. Coat. Technol. 339, 155( 2018) |
[50] | Q. Jin, G.Y. Tian, J.X. Li, Y. Zhao, H. Yan , Colloids Surf. A 577, 8 ( 2019) |
[51] | J. Kuang, Z.X. Ba, Z.Z. Li, Z.Z. Wang, J.H. Qiu , The study on corrosion resistance of superhydrophobic coatings on magnesium. Appl. Surf. Sci.( 2020). https://doi.org/10.1016/j.apsusc.2019.144137 |
[52] | X. Liu, T.C. Zhang, H. He, L. Ouyang, S. Yuan , A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition. J. Alloys Compd.(2020). https://doi.org/10.1016/j.jallcom.2020.155210 |
[53] | E. Chibowski, K. Terpilowski , Appl. Surf. Sci. 256, 1573( 2009) |
[54] | P. Wang, D. Zhang, R. Qiu, B.R. Hou , Corros. Sci. 53, 2080 ( 2011) |
[55] | A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546( 1944) |
[56] | S.T. Wang, L. Feng, L. Jiang , Adv. Mater. 18, 767( 2006) |
[1] | Jie Cui, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Fluidity, Microstructure, and Tensile Properties of Sub-rapidly Solidified Mg-6Al-4Zn-xSn (x = 0, 0.6, 1.2, 1.8) Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1265-1276. |
[2] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[3] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[4] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[5] | Zheng-Zheng Yin, Wei Zhao, Jing Xu, Rong-Chang Zeng, Feng-Qin Wang, Zhen-Lin Wang. Corrosion Resistance of Superhydrophobic Mg(OH)2/Calcium Myristate Composite Coating on Magnesium Alloy AZ31 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1618-1634. |
[6] | Ben-Qi Xu, Hui Zhang, Dong Ma, Qun-Shuang Ma, Li-Zhai Pei. Ageing Hardening Mechanism and Corrosion Resistance in the Fe65Cr13Cu3(CoMnMoNiAlTi)19 Medium-Entropy Stainless Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1601-1608. |
[7] | Chunliang Yang, Chuansong Wu, Junjie Zhao. Numerical Prediction of Intermetallic Compounds Thickness in Friction Stir Welding of Dissimilar Aluminum/Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1375-1385. |
[8] | Ying-Ying Zuo, Hua Liu, Peng Gong, Shu-De Ji, Bao-Sheng Wu. Radial Additive Friction Stir Repairing of Mechanical Hole Out of Dimension Tolerance of AZ31 Magnesium Alloy Assisted by Stationary Shoulder: Process and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1345-1360. |
[9] | Jie Wei, Qudong Wang, Li Zhang, Mahmoud Ebrahimi, Haiyan Jiang, Wenjiang Ding. Effects of Gd Addition on the Microstructure and Tensile Properties of Mg-4Al-5RE Alloy Produced by Three Different Casting Methods [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1361-1374. |
[10] | Mingming Zhang, Yipeng Feng, Yahui Wang, Yunsong Niu, Li Xin, Yongfeng Li, Jianxiu Su, Shenglong Zhu, Fuhui Wang. Corrosion Behaviors of Nitride Coatings on Titanium Alloy in NaCl-Induced Hot Corrosion [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1434-1446. |
[11] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[12] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[13] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[14] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[15] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||