Acta Metallurgica Sinica (English Letters) ›› 2018, Vol. 31 ›› Issue (10): 1019-1030.DOI: 10.1007/s40195-018-0795-4
Special Issue: 2018年复合材料专辑; 2018年铝合金专辑
• Orginal Article • Previous Articles Next Articles
					
													Lavish Kumar Singh1, Alok Bhadauria1, Subhodeep Jana2, Tapas Laha1(
)
												  
						
						
						
					
				
Received:2018-08-17
															
							
																	Revised:2018-08-17
															
							
															
							
																	Online:2018-10-10
															
							
																	Published:2018-10-30
															
						Lavish Kumar Singh, Alok Bhadauria, Subhodeep Jana, Tapas Laha. Effect of Sintering Temperature and Heating Rate on Crystallite Size, Densification Behaviour and Mechanical Properties of Al-MWCNT Nanocomposite Consolidated via Spark Plasma Sintering[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(10): 1019-1030.
Add to citation manager EndNote|Ris|BibTeX
| Sintering temperature (°C) | Heating rate (°C/min) | References | 
|---|---|---|
| 600 | 40 | [ |  
| 500 | - | [ |  
| 350-550 | 100 | [ |  
| 600 | 50 | [ |  
| 480-600 | 40 | [ |  
| 580 | 100 | [ |  
| 600 | 40 | [ |  
| 580 | 50 | [ |  
| 600 | 40 | [ |  
| 600 | - | [ |  
Table 1 Sintering parameters (sintering temperature and heating rate) used by different researchers for consolidating Al-CNT nanocomposite via spark plasma sintering
| Sintering temperature (°C) | Heating rate (°C/min) | References | 
|---|---|---|
| 600 | 40 | [ |  
| 500 | - | [ |  
| 350-550 | 100 | [ |  
| 600 | 50 | [ |  
| 480-600 | 40 | [ |  
| 580 | 100 | [ |  
| 600 | 40 | [ |  
| 580 | 50 | [ |  
| 600 | 40 | [ |  
| 600 | - | [ |  
																													Fig. 1 SEM images of starting materials: a as-received microcrystalline Al powders of 7-15 μm size; b as-received pristine MWCNTs of diameter 40-70 nm and length 0.2-0.5 μm
| Sample | Sintering temperature (°C) | Heating rate (°C/min) | Pressure (MPa) | Holding time (min) | 
|---|---|---|---|---|
| ST400 | 400 | 50 | 80 | 20 | 
| ST500 | 500 | 50 | 80 | 20 | 
| ST600 | 600 | 50 | 80 | 20 | 
| HR25 | 500 | 25 | 80 | 20 | 
| HR100 | 500 | 100 | 80 | 20 | 
Table 2 Sintering parameters for consolidating Al-0.5 wt% MWCNT nanocomposites
| Sample | Sintering temperature (°C) | Heating rate (°C/min) | Pressure (MPa) | Holding time (min) | 
|---|---|---|---|---|
| ST400 | 400 | 50 | 80 | 20 | 
| ST500 | 500 | 50 | 80 | 20 | 
| ST600 | 600 | 50 | 80 | 20 | 
| HR25 | 500 | 25 | 80 | 20 | 
| HR100 | 500 | 100 | 80 | 20 | 
																													Fig. 3 SEM images of a ball-milled Al powders, b physio-chemically functionalized MWCNTs, c TEM image of a MWCNT embedded in ball-milled Al powder particles
																													Fig. 4 a XRD patterns of spark plasma-sintered Al-0.5 wt% MWCNT nanocomposites consolidated at different sintering temperatures and heating rates, b TEM image of a MWCNT dispersed in Al matrix, c high-resolution TEM image showing clean interface between Al and MWCNT (ST400, ST500 and ST600 stand for samples sintered at 400, 500 and 600 °C with a hearting rate of 50 °C/min; HR25 and HR100 stand for samples sintered at 500 °C with hearting rates of 25 and 100 °C/min, respectively)
| Nanocomposite | Crystallite size (nm) | Relative density (%) | Average pore diameter (μm) | Number of pores | Total punch displacement (mm) | 
|---|---|---|---|---|---|
| ST400 | 53 | 86.3 | 87 | 1885 | 1.02 | 
| ST500 | 62 | 95.1 | 46 | 357 | 1.36 | 
| ST600 | 98 | 98.7 | 17 | 24 | 1.96 | 
| HR25 | 83 | 96.0 | 39 | 290 | 1.46 | 
| HR100 | 58 | 94.3 | 61 | 623 | 1.33 | 
Table 3 Crystallite size, relative density, average pore diameter, number of pores and total punch displacement of synthesized Al-0.5 wt% MWCNT nanocomposites
| Nanocomposite | Crystallite size (nm) | Relative density (%) | Average pore diameter (μm) | Number of pores | Total punch displacement (mm) | 
|---|---|---|---|---|---|
| ST400 | 53 | 86.3 | 87 | 1885 | 1.02 | 
| ST500 | 62 | 95.1 | 46 | 357 | 1.36 | 
| ST600 | 98 | 98.7 | 17 | 24 | 1.96 | 
| HR25 | 83 | 96.0 | 39 | 290 | 1.46 | 
| HR100 | 58 | 94.3 | 61 | 623 | 1.33 | 
																													Fig. 5 SEM micrographs showing presence of significant amount of porosities and interparticle boundaries at low a and high b magnification in sample sintered at 400 °C and heating rate 50 °C/min, homogeneous consolidation in sample sintered at 600 °C and heating rate 50 °C/min c, relatively homogeneous consolidation with the presence of small amount of porosities in the sample sintered at 500 °C at a heating rate of 100 °C/min d
																													Fig. 6 Top a-c, front d-f and side g-i views of a slice from Al-MWCNT nanocomposites sintered at sintering temperatures of 400 °C a, d, g, 500 °C b, e, h, 600 °C c, f, i, respectively (Dark blue colour represents porosity volume of ~?0-0.05 μm3, sky blue colour represents porosity volume of ~?0.05-0.15 μm3, and green colour represents porosity volume of ~?0.15-0.3 μm3). (Color figure online)
																													Fig. 7 Variation of punch movement within die with respect to sintering temperature while carrying out spark plasma sintering of Al-MWCNT powder mixture: a displacement versus sintering temperature; b displacement rate versus sintering temperature
																													Fig. 8 a Vickers microhardness values of synthesized nanocomposites and SEM micrographs showing microhardness indent marks on samples sintered at b 400 °C, c 500 °C, d 600 °C at heating rate of 50 °C/min
																													Fig. 9 a Load-displacement curves, b elastic modulus, c nanohardness values of Al-0.5 wt% MWCNT nanocomposites obtained from nanoindentation experiment under a peak load of 2000 μN
 
  | 
									
| [1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. | 
| [2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. | 
| [3] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. | 
| [4] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. | 
| [5] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. | 
| [6] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. | 
| [7] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. | 
| [8] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. | 
| [9] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. | 
| [10] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. | 
| [11] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. | 
| [12] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. | 
| [13] | Boxiang Wang, Zhenhua Wang, Juntang Yuan, Bin Yu. Effects of (Ti, W)C Addition on the Microstructure and Mechanical Properties of Ultrafine WC-Co Tool Materials Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 892-902. | 
| [14] | Yue Su, Shun-Cun Luo, Liang Meng, Piao Gao, Ze-Min Wang. Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability, Microstructure Evolution and Mechanical Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 774-788. | 
| [15] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
			   WeChat
			