Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (7): 665-674.DOI: 10.1007/s40195-017-0597-0
• Orginal Article • Previous Articles Next Articles
Ming-Hui Cai1(), Hong-Shou Huang1, Hai-Jun Pan1, Sheng-Hui Sun1, Hua Ding1, Peter Hodgson2
Received:
2017-02-28
Revised:
2017-04-11
Online:
2017-07-20
Published:
2017-08-22
About author:
These authors contributed equally to this work.
Ming-Hui Cai, Hong-Shou Huang, Hai-Jun Pan, Sheng-Hui Sun, Hua Ding, Peter Hodgson. Microstructure and Tensile Properties of a Nb-Mo Microalloyed 6.5Mn Alloy Processed by Intercritical Annealing and Quenching and Partitioning[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 665-674.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Predicted variation in different phase fractions as a function of QT for the cold-rolled Nb-Mo microalloyed 6.5Mn steel treated by Q & P: \(\gamma_{\text{R}}\), \(\gamma_{{1{\text{st}}}}\), \(\alpha_{{1\text{st}}}^{{\prime }}\) and \(\alpha_{{2\text{nd}}}^{{\prime }}\), which represent the final retained austenite, austenite after initial quenching, primary martensite and secondary martensite, respectively
Fig. 4 TEM morphologies of the cold-rolled Nb-Mo microalloyed 6.5Mn steel treated by Q & P with different austenization temperatures: a-c 800 °C; d-f 850 °C; b, f correspond to the dark field images of a, e, respectively. \(\gamma_{\text{R}}\) retained austenite; \(\alpha_{\text{B}}\) carbide-free bainite; \(\alpha_{\text{L}}^{{\prime }}\) lath martensite; \(\alpha_{\text{T}}^{{\prime }}\) twinning martensite
Fig. 6 SEM micrographs of the cold-rolled Nb-Mo microalloyed 6.5Mn steel treated by IA at 650 °C for different time: a 10 min; b 30 min; c 60 min; d 180 min; e 270 min; f 360 min. α ferrite; \(\gamma_{\text{R}}\) retained austenite; SF stacking fault
Fig. 7 a X-ray diffraction patterns; b the volume fraction of retained austenite (\({\text{V}}_{R}\)) of the cold-rolled Nb-Mo microalloyed 6.5Mn steel treated by IA at 650 °C for different holding time
Process | Parameter (min/ °C) | YS (MPa) | UTS (MPa) | EL (%) | PSE (GPa%) |
---|---|---|---|---|---|
IA | 10 | 1143 | 1259 | 26.9 | 33.9 |
30 | 1097 | 1224 | 33.0 | 40.4 | |
60 | 983 | 1184 | 30.0 | 35.5 | |
180 | 863 | 1116 | 34.1 | 38.1 | |
270 | 881 | 1242 | 30.1 | 37.4 | |
360 | 911 | 1086 | 33.9 | 36.8 | |
Q & P | 800 | 1150 | 1400 | 10.0 | 14.0 |
850 | 1050 | 1220 | 14.0 | 17.1 |
Table 1 Mechanical properties of the cold-rolled Nb-Mo microalloyed 6.5Mn steel for both IA and Q & P processes
Process | Parameter (min/ °C) | YS (MPa) | UTS (MPa) | EL (%) | PSE (GPa%) |
---|---|---|---|---|---|
IA | 10 | 1143 | 1259 | 26.9 | 33.9 |
30 | 1097 | 1224 | 33.0 | 40.4 | |
60 | 983 | 1184 | 30.0 | 35.5 | |
180 | 863 | 1116 | 34.1 | 38.1 | |
270 | 881 | 1242 | 30.1 | 37.4 | |
360 | 911 | 1086 | 33.9 | 36.8 | |
Q & P | 800 | 1150 | 1400 | 10.0 | 14.0 |
850 | 1050 | 1220 | 14.0 | 17.1 |
Fig. 8 Schematic illustrations of microstructural evolution of the cold-rolled Nb-Mo microalloyed 6.5Mn steel treated by IA. \(\alpha^{{\prime }}\) deformed martensite; \(\alpha\) ferrite; \(\gamma_{\text{R}}\) retained austenite
Fig. 9 Schematic illustrations of microstructural evolution of the cold-rolled Nb-Mo microalloyed 6.5Mn steel treated by Q & P. \(\gamma\) austenite; \(\alpha_{\text{A}}^{{\prime }}\) quenched martensite; \(\gamma_{\text{A}}\) quenched austenite; \(\gamma_{\text{R}}\) retained austenite; \(\alpha_{\text{P}}^{{\prime }}\) partitioned martensite
AT (min) | YPE (%) |
---|---|
10 | 11.46 |
30 | 11.24 |
60 | 9.72 |
180 | 8.83 |
270 | 7.29 |
360 | 1.82 |
Table 2 YPE of the cold-rolled Nb-Mo microalloyed 6.5Mn steel treated by IA
AT (min) | YPE (%) |
---|---|
10 | 11.46 |
30 | 11.24 |
60 | 9.72 |
180 | 8.83 |
270 | 7.29 |
360 | 1.82 |
Fig. 11 a Grain size versus annealing time; b yield point elongation versus grain size of the cold-rolled Nb-Mo microalloyed 6.5Mn steel treated by IA
|
[1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[3] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[4] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[5] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[6] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[7] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[8] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[9] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[10] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[11] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[12] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. |
[13] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. |
[14] | Jinyong Gao, Lijun Yang, Lei Cui, Peng Lu, Jun Yang, Yanjun Gao. Improving the Weld Formation and Mechanical Properties of the AA-5A06 Friction Pull Plug Welds by Axial Force Control [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 828-838. |
[15] | Boxiang Wang, Zhenhua Wang, Juntang Yuan, Bin Yu. Effects of (Ti, W)C Addition on the Microstructure and Mechanical Properties of Ultrafine WC-Co Tool Materials Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 892-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||