Acta Metallurgica Sinica (English Letters) ›› 2017, Vol. 30 ›› Issue (4): 352-366.DOI: 10.1007/s40195-017-0548-9
Special Issue: 2017腐蚀虚拟专辑; 2016-2017镁合金虚拟专辑; 2017-2018镁合金专辑
• Orginal Article • Previous Articles Next Articles
Jakraphan Ninlachart1(), Krishnan S. Raja1
Received:
2017-02-14
Revised:
2017-02-14
Online:
2017-02-14
Published:
2017-05-17
Jakraphan Ninlachart, Krishnan S. Raja. Threshold Chloride Concentration for Passivity Breakdown of Mg-Zn-Gd-Nd-Zr Alloy (EV31A) in Basic Solution[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(4): 352-366.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Optical microstructures of EV31A in different heat treatment conditions: a as-received, b solution heat-treated, c peak-aged (200 °C, 16 h), d overaged (200 °C, 100 h)
Fig. 2 a XRD patterns of EV31A in different heat treatment conditions, b Vickers hardness of EV31A in different heat treatment conditions. AR as-received, ST solution heat-treated, 200/16: peak-aged (PA) at 200 °C for 16 h, 200/100 overaged (OA) at 200 °C for 100 h
Sample | OCP | ETranspassive | ECross over | Passive current density |
---|---|---|---|---|
(V vs Ag/AgCl) | (V vs Ag/AgCl) | (V vs Ag/AgCl) | (μA/cm2) | |
AR | -1.03 | 1.67 | 1.07 | 7.00 |
ST | -1.50 | 1.73 | 1.52 | 2.67 |
Peak aged | -1.20 | 1.52 | 1.31 | 3.90 |
Overaged | -1.21 | 1.58 | 1.47 | 4.11 |
Table 1 Cyclic polarization results of EV31A specimens in different heat-treated conditions in 0.1 M NaOH
Sample | OCP | ETranspassive | ECross over | Passive current density |
---|---|---|---|---|
(V vs Ag/AgCl) | (V vs Ag/AgCl) | (V vs Ag/AgCl) | (μA/cm2) | |
AR | -1.03 | 1.67 | 1.07 | 7.00 |
ST | -1.50 | 1.73 | 1.52 | 2.67 |
Peak aged | -1.20 | 1.52 | 1.31 | 3.90 |
Overaged | -1.21 | 1.58 | 1.47 | 4.11 |
Sample | OCP | ETranspassive | ECross over | Passive current density |
---|---|---|---|---|
(V vs Ag/AgCl) | (V vs Ag/AgCl) | (V vs Ag/AgCl) | (μA/cm2) | |
AR | -1.66 | 1.64 | 1.27 | 2.50 |
ST | -1.57 | 1.61 | 1.37 | 1.66 |
Peak aged | -1.55 | 1.58 | 1.29 | 1.21 |
Overaged | -1.57 | 1.62 | 1.38 | 2.20 |
Table 2 Cyclic polarization results of EV31A specimens in different heat-treated conditions in 80 ppm Cl- solution
Sample | OCP | ETranspassive | ECross over | Passive current density |
---|---|---|---|---|
(V vs Ag/AgCl) | (V vs Ag/AgCl) | (V vs Ag/AgCl) | (μA/cm2) | |
AR | -1.66 | 1.64 | 1.27 | 2.50 |
ST | -1.57 | 1.61 | 1.37 | 1.66 |
Peak aged | -1.55 | 1.58 | 1.29 | 1.21 |
Overaged | -1.57 | 1.62 | 1.38 | 2.20 |
Fig. 3 Cyclic polarization results of EV31A specimens in different heat-treated conditions in 0.1 M NaOH with different chloride additions: a 0 ppm Cl-,b 80 ppm Cl-, c 100 ppm Cl-, d 200 ppm Cl-, e 500 ppm Cl-, f 1000 ppm Cl-
Fig. 4 Cathodic polarization plots of EV31A alloy in different heat-treated conditions in 0.1 M NaOH solution with different chloride (NaCl) additions: a no chloride addition, b 80 ppm chloride, c 100 ppm chloride, d 200 ppm chloride
Sample | Cl- concentration | Tafel slope (V/dec) | Exchange current density for hydrogen evolution, i0 (A/cm2) | Over potential for 1 mA/cm2 (V) |
---|---|---|---|---|
AR | No Cl- | -0.14 | 1.3 × 10-11 | -1.11 |
80 ppm | -0.21 | 4.0 × 10-9 | -1.11 | |
100 ppm | -0.18 | 1.8 × 10-9 | -1.07 | |
200 ppm | -0.18 | 9.0 × 10-10 | -1.08 | |
ST | No Cl- | -0.16 | 2.9 × 10-10 | -1.03 |
80 ppm | -0.18 | 2.4 × 10-9 | -1.03 | |
100 ppm | -0.14 | 1.3 × 10-10 | -1.04 | |
200 ppm | -0.18 | 7.0 × 10-10 | -1.03 | |
Peak aged | No Cl- | -0.19 | 4.0 × 10-9 | -1.25 |
80 ppm | -0.18 | 3.8 × 10-10 | -1.05 | |
100 ppm | -0.16 | 1.5 × 10-10 | -1.07 | |
200 ppm | -0.13 | 1.2 × 10-11 | -1.05 | |
Overaged | No Cl- | -0.17 | 5.5 × 10-10 | -1.04 |
80 ppm | -0.18 | 7.7 × 10-10 | -1.07 | |
100 ppm | -0.14 | 1.0 × 10-10 | -1.04 | |
200 ppm | -0.14 | 9.5 × 10-12 | -1.05 |
Table 3 Summary of the cathodic polarization results of EV31A alloy in different heat-treated conditions in 0.1 M NaOH with addition of different chloride concentrations
Sample | Cl- concentration | Tafel slope (V/dec) | Exchange current density for hydrogen evolution, i0 (A/cm2) | Over potential for 1 mA/cm2 (V) |
---|---|---|---|---|
AR | No Cl- | -0.14 | 1.3 × 10-11 | -1.11 |
80 ppm | -0.21 | 4.0 × 10-9 | -1.11 | |
100 ppm | -0.18 | 1.8 × 10-9 | -1.07 | |
200 ppm | -0.18 | 9.0 × 10-10 | -1.08 | |
ST | No Cl- | -0.16 | 2.9 × 10-10 | -1.03 |
80 ppm | -0.18 | 2.4 × 10-9 | -1.03 | |
100 ppm | -0.14 | 1.3 × 10-10 | -1.04 | |
200 ppm | -0.18 | 7.0 × 10-10 | -1.03 | |
Peak aged | No Cl- | -0.19 | 4.0 × 10-9 | -1.25 |
80 ppm | -0.18 | 3.8 × 10-10 | -1.05 | |
100 ppm | -0.16 | 1.5 × 10-10 | -1.07 | |
200 ppm | -0.13 | 1.2 × 10-11 | -1.05 | |
Overaged | No Cl- | -0.17 | 5.5 × 10-10 | -1.04 |
80 ppm | -0.18 | 7.7 × 10-10 | -1.07 | |
100 ppm | -0.14 | 1.0 × 10-10 | -1.04 | |
200 ppm | -0.14 | 9.5 × 10-12 | -1.05 |
Fig. 5 I-t plots of EV31A specimens with different heat treatment conditions under potentiostatic control in 0.1 M NaOH solution with different chloride additions: a no chloride, b 80 ppm Cl-c 100 ppm Cl-, d 200 ppm Cl-, e 500 ppm Cl-. The applied potential (typically 0.5 VAg/AgCl) was in the middle of the passivation range of the corresponding heat-treated condition as shown in Fig. 3
Sample | Cl- concentration | Passivation kinetic exponent | Charge carrier density, ND |
---|---|---|---|
α | (1/cm3) | ||
AR | No Cl- | 0.684 | 2.08 × 1021 |
80 ppm | 0.687 | 2.46 × 1021 | |
500 ppm | 0.55 | 5.42 × 1021 | |
ST | No Cl- | 0.46 | 1.29 × 1021 |
80 ppm | 0.68 | 3.54 × 1021 | |
500 ppm | 0.57 | N/A | |
Peak aged | No Cl- | 0.48 | 3.50 × 1021 |
80 ppm | 0.72 | 2.30 × 1021 | |
500 ppm | 0.47 | N/A | |
Overaged | No Cl- | 0.42 | 1.87 × 1021 |
80 ppm | 0.59 | 2.50 × 1021 | |
500 ppm | 0.55 | 5.49 × 1021 |
Table 4 Passivation kinetic exponent and charge carrier density of EV31A specimens in different heat-treated conditions in different concentrations of chloride
Sample | Cl- concentration | Passivation kinetic exponent | Charge carrier density, ND |
---|---|---|---|
α | (1/cm3) | ||
AR | No Cl- | 0.684 | 2.08 × 1021 |
80 ppm | 0.687 | 2.46 × 1021 | |
500 ppm | 0.55 | 5.42 × 1021 | |
ST | No Cl- | 0.46 | 1.29 × 1021 |
80 ppm | 0.68 | 3.54 × 1021 | |
500 ppm | 0.57 | N/A | |
Peak aged | No Cl- | 0.48 | 3.50 × 1021 |
80 ppm | 0.72 | 2.30 × 1021 | |
500 ppm | 0.47 | N/A | |
Overaged | No Cl- | 0.42 | 1.87 × 1021 |
80 ppm | 0.59 | 2.50 × 1021 | |
500 ppm | 0.55 | 5.49 × 1021 |
Fig. 6 Optical microstructures of the specimens under potentiostatic condition (1.1 VAg/AgCl) until pit initiation in 500 ppm Cl- + 0.1 M NaOH: a as-received, b solution heat-treated, c peak-aged (200 °C, 16 h), d overaged (200 °C, 100 h)
Fig. 7 SEM images of the solution heat-treated specimen before and after 1 h potentiostatic passivation at 0.5 VAg/AgCl in 0.1 M NaOH solution: a before the test, b after the test, c EDX spectrum of elemental analysis of the circled particle in a, and d EDX spectrum of the circled particle shown in b. Noted that the specimen in Fig. 7a was ground with SiC paper up to 600 grit, and specimen in Fig. 7b was ground up to 1-μm diamond suspension. The images do not show the exact same area
Fig. 8 Nyquist plots of EV31A specimens passivated at mid-potential of their passivation ranges for 1 h in 0.1 M NaOH solution with different chloride additions: a no chloride, b 80 ppm Cl-, c 100 ppm Cl-, d 200 ppm Cl-; e electrical equivalent circuit fitted the data of Nyquist plots with χ2 < 10-4
Sample | Cl- concentration | Rs | Q1 | α | Q2 | β | R1 | R2 |
---|---|---|---|---|---|---|---|---|
(ppm) | (Ohm) | (S·sα) | (S·sβ) | (Ohm) | (Ohm) | |||
AR | 0 | 51.59 | 9.063 × 10-6 | 0.8 | 2.084 × 10-4 | 0.8 | 5.642 × 1011 | 4.956 × 104 |
80 | 53.31 | 8.449 × 10-6 | 0.9441 | 1.616 × 10-4 | 0.5918 | 8.461 × 1016 | 4.509 × 104 | |
500 | 55.41 | 9.759 × 10-6 | 0.9475 | 2.536 × 10-5 | 0.7867 | 4.933 × 104 | 1.011 × 105 | |
ST | 0 | 58.7 | 5.65 × 10-6 | 0.9218 | 8.943 × 10-6 | 0.2355 | 4.511 × 105 | 9.939 × 10-4 |
80 | 50.77 | 9.583 × 10-6 | 0.9475 | 5.216 × 10-5 | 0.8719 | 8.237 × 104 | 9.312 × 104 | |
500 | - | - | - | - | - | - | - | |
Peak aged | 0 | 5.84 × 10-16 | 1.393 × 10-5 | 2.96 × 10-10 | 1.313 × 10-5 | 0.9162 | 2.274 × 1012 | 56.36 |
80 | 63.1 | 7.567 × 10-6 | 0.9459 | 2.414 × 10-4 | 0.7426 | 6.31 × 1013 | 5.434 × 104 | |
500 | - | - | - | - | - | - | - | |
Overaged | 0 | 48.64 | 7.823 × 10-6 | 0.9255 | 8.999 × 10-7 | 0.4205 | 5.732 × 1013 | 3.668 × 104 |
80 | 51.18 | 8.189 × 10-6 | 0.9384 | 1.664 × 10-4 | 0.5575 | 1.353 × 1018 | 4.977 × 104 | |
500 | 49.46 | 1.055 × 10-5 | 0.9494 | 3.477 × 10-5 | 0.6005 | 8.024 × 104 | 1.009 × 105 |
Table 5 Equivalent circuit values of the specimens in different chloride concentrations
Sample | Cl- concentration | Rs | Q1 | α | Q2 | β | R1 | R2 |
---|---|---|---|---|---|---|---|---|
(ppm) | (Ohm) | (S·sα) | (S·sβ) | (Ohm) | (Ohm) | |||
AR | 0 | 51.59 | 9.063 × 10-6 | 0.8 | 2.084 × 10-4 | 0.8 | 5.642 × 1011 | 4.956 × 104 |
80 | 53.31 | 8.449 × 10-6 | 0.9441 | 1.616 × 10-4 | 0.5918 | 8.461 × 1016 | 4.509 × 104 | |
500 | 55.41 | 9.759 × 10-6 | 0.9475 | 2.536 × 10-5 | 0.7867 | 4.933 × 104 | 1.011 × 105 | |
ST | 0 | 58.7 | 5.65 × 10-6 | 0.9218 | 8.943 × 10-6 | 0.2355 | 4.511 × 105 | 9.939 × 10-4 |
80 | 50.77 | 9.583 × 10-6 | 0.9475 | 5.216 × 10-5 | 0.8719 | 8.237 × 104 | 9.312 × 104 | |
500 | - | - | - | - | - | - | - | |
Peak aged | 0 | 5.84 × 10-16 | 1.393 × 10-5 | 2.96 × 10-10 | 1.313 × 10-5 | 0.9162 | 2.274 × 1012 | 56.36 |
80 | 63.1 | 7.567 × 10-6 | 0.9459 | 2.414 × 10-4 | 0.7426 | 6.31 × 1013 | 5.434 × 104 | |
500 | - | - | - | - | - | - | - | |
Overaged | 0 | 48.64 | 7.823 × 10-6 | 0.9255 | 8.999 × 10-7 | 0.4205 | 5.732 × 1013 | 3.668 × 104 |
80 | 51.18 | 8.189 × 10-6 | 0.9384 | 1.664 × 10-4 | 0.5575 | 1.353 × 1018 | 4.977 × 104 | |
500 | 49.46 | 1.055 × 10-5 | 0.9494 | 3.477 × 10-5 | 0.6005 | 8.024 × 104 | 1.009 × 105 |
|
[1] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[2] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[3] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[4] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[5] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[6] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[7] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[8] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[9] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[10] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[11] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[12] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[13] | Fenghua Wang, Peng Su, Linxin Qin, Shuai Dong, Yunliang Li, Jie Dong. Microstructure and Mechanical Properties of Mg-3Al-Zn Magnesium Alloy Sheet by Hot Shear Spinning [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1226-1234. |
[14] | Yu-Wei Liu, Jian Zhang, Xiao Lu, Miao-Ran Liu, Zhen-Yao Wang. Effect of Metal Cations on Corrosion Behavior and Surface Structure of Carbon Steel in Chloride Ion Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1302-1310. |
[15] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||