Acta Metallurgica Sinica (English Letters) ›› 2015, Vol. 28 ›› Issue (11): 1344-1353.DOI: 10.1007/s40195-015-0332-7
• Orginal Article • Previous Articles Next Articles
Zu-Qi Hu1, Xin-Jian Zhang1(), Shu-Sen Wu2
Received:
2015-07-08
Revised:
2015-09-15
Online:
2015-11-14
Published:
2015-11-20
Zu-Qi Hu, Xin-Jian Zhang, Shu-Sen Wu. Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al-Mg-Si-Mn Alloy[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(11): 1344-1353.
Add to citation manager EndNote|Ris|BibTeX
T d | T m | P | v 1 | v 2 |
---|---|---|---|---|
200 °C | 700-710 °C | 100 MPa | 0.3 m/s | 3 m/s |
Table 1 Experimental die-casting parameters employed in current work
T d | T m | P | v 1 | v 2 |
---|---|---|---|---|
200 °C | 700-710 °C | 100 MPa | 0.3 m/s | 3 m/s |
Fig. 2 Schematics of the tensile specimens (unit: mm): a locations of the A-type tensile specimens, b A-type specimen, c B-type specimen, d C-type specimen
Process | Specimen type | Mg | Si | Mn | Fe | Ti | Al |
---|---|---|---|---|---|---|---|
HPDC/HVDC | A | 6.9 | 1.98 | 0.54 | 0.13 | 0.085 | Bal |
HPDC | B | 5.7 | 1.94 | 0.57 | 0.16 | 0.09 | Bal |
HPDC | C | 5.5 | 1.8 | 0.55 | 0.15 | 0.085 | Bal |
Table 2 Chemical compositions of the different types of die-casting specimens (wt%)
Process | Specimen type | Mg | Si | Mn | Fe | Ti | Al |
---|---|---|---|---|---|---|---|
HPDC/HVDC | A | 6.9 | 1.98 | 0.54 | 0.13 | 0.085 | Bal |
HPDC | B | 5.7 | 1.94 | 0.57 | 0.16 | 0.09 | Bal |
HPDC | C | 5.5 | 1.8 | 0.55 | 0.15 | 0.085 | Bal |
Parameter | Value |
---|---|
Latent heat of fusion | 4.95 × 109 J/g |
Solidification range | 813-898 K |
Density | 2.5 g/cm3 |
Thermal conductivity of liquid | 1.88 × 107 W/m K |
Specific heat | 1.153 × 107 J/kg K |
Table 3 Thermal physical parameters adopted in simulations
Parameter | Value |
---|---|
Latent heat of fusion | 4.95 × 109 J/g |
Solidification range | 813-898 K |
Density | 2.5 g/cm3 |
Thermal conductivity of liquid | 1.88 × 107 W/m K |
Specific heat | 1.153 × 107 J/kg K |
Fig. 3 Typical microstructures of the transverse cross section of HPDC AlMg5Si2Mn plate samples in different locations: a center part, b surface and subsurface, c dilatant shear band, d higher magnification of the dotted box in c
Fig. 4 Microstructures from the die-cast plates sectioned longitudinally: a inlet transverse of the castings showing the gate area (enclosed by the dotted box) and the die-filling direction heads into the page, b longitudinally cross-sectional area near the gate from the solid line in a, c higher magnification of the dotted box in b and the surface layer edge is enclosed by the dotted lines, d longitudinally cross-sectional area around the line 2 in a
Fig. 5 Microstructure from the die-cast plates sectioned transversely: a transverse of the castings showing the overflows area (enclosed by the dotted box) and the die-filling direction is out of the page, b corner of the cross-sectional area near the overflow from the line 1 in a, c middle part of the cross-sectional area near the overflow from the line 1, d higher magnification of the dotted box in c, e transversely cross-sectional area near the overflow from the line 2 in a and the regions pointed by the solid arrows represent the pure eutectic region
Fig. 8 Schematics of the formation of the ellipse-like surface layer edge: a melt flow during solidification, b microstructures in different locations
Fig. 9 Schematics of the formation mechanism of the microstructure around the overflows: a melt front advance to the overflow, b ESCs are blocked around the overflow, c liquid alloy preferentially solidified around the overflow, d die-filling process completed
Process specimen | HPDC-B type | HVDC-B type | HPDC-C type |
---|---|---|---|
Density (g/cm3) | 2.593 | 2.602 | 2.641 |
Table 4 Comparison of the densities of B and C specimens
Process specimen | HPDC-B type | HVDC-B type | HPDC-C type |
---|---|---|---|
Density (g/cm3) | 2.593 | 2.602 | 2.641 |
[1] | D. Brungs, Mater. Des. 18, 285(1997) |
[2] | D. Carle, G. Blount, Mater. Des. 20, 267(1999) |
[3] | K. Greven, D. Dragulin, in Proceedings of the 2nd International Conference on Light Metals Technology, ed. by H. Kaufmann(LKR-Verlag, Beschreibung, 2005), pp. 19-23 |
[4] | H. Kaufmann, P.J. Uggowitzer, Adv. Eng. Mater. 3, 963(2001) |
[5] | H. Kaufmann, P.J. Uggowitzer, Metallurgy and Processing of High-integrity Light Metal Pressure Castings, 1st edn. (Schiele & Schön, Berlin, 2007), pp. 180-190 |
[6] | S. Ji, D. Watson, Z. Fan, M. White, Mater. Sci. Eng. A 556, 824 (2012) |
[7] | S. Otarawanna, C.M. Gourlay, H.I. Laukli, A.K. Dahle, Mater. Charact. 60, 1432(2009) |
[8] | S. Otarawanna, C.M. Gourlay, H.I. Laukli, A.K. Dahle, Mater. Chem. Phys. 130, 251(2011) |
[9] | S. Otarawanna, H.I. Laukli, C.M. Gourlay, A.K. Dahle, Metall. Mater. Trans. A 41, 1836 (2010) |
[10] | A. Luo, A.K. Sachdev, B.R. Powell, China Foundry 4, 463 (2010) |
[11] | X.P. Niu, B.H. Hu, I. Pinwill, H. Li, J. Mater. Process. Technol. 105, 119(2000) |
[12] | G. Hébert, D. Dubé, R. Tremblay, Mater. Sci. Eng. A 552, 89 (2012) |
[13] | C.K. Jin, C.G. Kang, Int. J. Hydrogen Energy 37, 1661 (2012) |
[14] | Z. Hu, L. Wan, S. Wu, H. Wu, X. Liu, Mater. Des. 46, 451(2013) |
[15] | Z.W. Chen, Mater. Sci. Eng. A 348, 145 (2003) |
[16] | A. Hamasaiid, G. Wang, C. Davidson, G. Dour, M.S. Dargusch, Metall. Mater. Trans. A 40, 3056 (2009) |
[17] | N.A. Belov, D.G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Application for Commercial Aluminum Alloys (Elesvier, Oxford, 2005), pp. 47-82 |
[18] | A.K. Dahle, D.H. Acta Mater. 47, 31(1998) |
[19] | S.G. Lee, G.R. Patel, A.M. Gokhale, Scr. Mater. 52, 1063(2005) |
[20] | S. Otarawanna, C.M. Gourlay, H.I. Laukli, A.K. Dahle, Trans. Indian Inst. Met. 62, 499(2009) |
close |
[1] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[2] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[3] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[4] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[5] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[6] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[7] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[8] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[9] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[10] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[11] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[12] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[13] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. |
[14] | Boxiang Wang, Zhenhua Wang, Juntang Yuan, Bin Yu. Effects of (Ti, W)C Addition on the Microstructure and Mechanical Properties of Ultrafine WC-Co Tool Materials Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 892-902. |
[15] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||