Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (5): 853-861.DOI: 10.1007/s40195-014-0124-5
• Orginal Article • Previous Articles Next Articles
Lasko Galina(), Weber Ulrich, Schmauder Siegfried
Received:
2014-08-08
Revised:
2014-06-25
Online:
2014-08-15
Published:
2014-11-13
Lasko Galina, Weber Ulrich, Schmauder Siegfried. Finite Element Simulations of Crack Propagation in Al2O3/6061Al Composites[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 853-861.
Add to citation manager EndNote|Ris|BibTeX
Material | Elastic modulus, E (MPa) | Poisson´s ratio, ν | Thermal expansion coefficient, α (10−6/K) |
---|---|---|---|
6061Al matrix | 66,000 | 0.33 | 23.87 |
Al2O3 particles | 380,000 | 0.22 | 2.60 |
Table 1 Elastic properties and thermal expansion coefficient used in the FE simulations
Material | Elastic modulus, E (MPa) | Poisson´s ratio, ν | Thermal expansion coefficient, α (10−6/K) |
---|---|---|---|
6061Al matrix | 66,000 | 0.33 | 23.87 |
Al2O3 particles | 380,000 | 0.22 | 2.60 |
Fig. 1 Stress-strain curves for the 6061Al-T6 matrix, ductile transition phase and brittle Al2O3 inclusion. The elastic-plastic stress-strain curves are used alternatively for both Al-matrix and interface
Simulation | Properties of the transition phase | Damage criteria | Residual stress | ||
---|---|---|---|---|---|
Transition phase | Matrix | Particles | |||
No. 1 | Brittle, E = 326 GPa, ν = 0.3 | Normal stress, σ c = 4,000 MPa | Rice and Tracey, A = 2.82 B = 2.07 D c = 1 | Normal stress, σ c = 3,000 MPa | Yes (cooling down from 500°C till 20°C) |
No. 2 | No | ||||
No. 3 | Without transition phase | The same criterion as for particle | Rice and Tracey, A = 2.82, B = 2.07, D c = 1 | σ c = 3,000 MPa σ c = 1,500 MPa | Yes |
No. 4 | Brittle, E = 326 GPa, ν = 0.3 | Normal stress, σ c = 3,000 MPa | Rice and Tracey, A = 2.82, B = 2.07, D c = 1 | Normal stress, σ c = 4,000 MPa | Yes |
No. 5 | Ductile, harder than matrix | Rice and Tracey, A = 1.41 B = 1.035 D c = 1 | Rice and Tracey, A = 2.82, B = 2.07, D c = 1 | Normal stress, σcrit = 4,000 MPa | Yes |
No. 6 | No | ||||
No. 7 | Ductile, softer than matrix | Rice and Tracey, A = 2.82 B = 2.07 D c = 1 | Rice and Tracey, A = 1.41, B = 1.035, D c = 1 | Normal stress, σ c = 4,000 MPa | Yes |
No. 8 | No |
Table 2 Variations of mechanical properties and damage parameters of MMC constituents used in different simulations
Simulation | Properties of the transition phase | Damage criteria | Residual stress | ||
---|---|---|---|---|---|
Transition phase | Matrix | Particles | |||
No. 1 | Brittle, E = 326 GPa, ν = 0.3 | Normal stress, σ c = 4,000 MPa | Rice and Tracey, A = 2.82 B = 2.07 D c = 1 | Normal stress, σ c = 3,000 MPa | Yes (cooling down from 500°C till 20°C) |
No. 2 | No | ||||
No. 3 | Without transition phase | The same criterion as for particle | Rice and Tracey, A = 2.82, B = 2.07, D c = 1 | σ c = 3,000 MPa σ c = 1,500 MPa | Yes |
No. 4 | Brittle, E = 326 GPa, ν = 0.3 | Normal stress, σ c = 3,000 MPa | Rice and Tracey, A = 2.82, B = 2.07, D c = 1 | Normal stress, σ c = 4,000 MPa | Yes |
No. 5 | Ductile, harder than matrix | Rice and Tracey, A = 1.41 B = 1.035 D c = 1 | Rice and Tracey, A = 2.82, B = 2.07, D c = 1 | Normal stress, σcrit = 4,000 MPa | Yes |
No. 6 | No | ||||
No. 7 | Ductile, softer than matrix | Rice and Tracey, A = 2.82 B = 2.07 D c = 1 | Rice and Tracey, A = 1.41, B = 1.035, D c = 1 | Normal stress, σ c = 4,000 MPa | Yes |
No. 8 | No |
Fig. 2 Boundary conditions and FE-mesh of cut-out of Al2O3/6061Al MMC (white represents inclusion, green represents the matrix and dark green represents the transition phase)
Fig. 3 Stress-strain curves for the cut-out of the microstructure from Fig. 2 with different properties of the transition phase: a without residual stresses; b with residual stresses
Fig. 4 Damage evolution in Al2O3/6061Al composite microstructure obtained by simulation No. 1 at the following deformation steps: a strain is 0.5%; b strain is 1.1%; c strain is 2.0%; d strain is 2.8%; e strain is 3.8%; f strain is 4.5%
Fig. 5 Damage evolution in the model of the Al2O3/6061Al composite microstructure obtained by simulation No. 1 at the following macroscopic deformation steps: a strain is 0.5%; b strain is 2.0%; c strain is 3.8%; d strain is 4.5%
Fig. 6 Stress-strain curves for the small cut-out from the microstructure of the specimen under tensile loading with accounting of residual stresses with different values of critical normal stress damage criterion for inclusion (simulation No. 3 in Table 2)
Fig. 7 Damage evolution in the model of the Al2O3/6061Al composite microstructure obtained by simulation No. 4 at the following macroscopic deformation steps: a strain is 0.5%; b strain is 2.0%; c strain is 3.8%; d strain is 4.5%
Fig. 8 Damage evolution in the model of the Al2O3/6061Al composite microstructure obtained by simulation No. 5 at the following macroscopic deformation steps: a strain is 0.5%; b strain is 2.0%; c strain is 2.8%; d strain is 4.5%
Fig. 9 Damage evolution in the model of the Al2O3/6061Al composite microstructure obtained by simulation No. 7 at the following macroscopic deformation steps: a strain is 0.5%; b strain is 1.1%; c strain is 2.0%; d strain is 2.8%
Fig. 10 Stress-strain curve for the microscopic cut-out of the microstructure from Fig. 2 under tensile loading after cooling down from 500 to 200 and 100°C, respectively
Fig. 11 Stress-strain curve for the microscopic cut-out of the microstructure from Fig. 2 under tensile loading after cooling down from 500, 200 and 100°C to room temperature
[1] | T.W. Clyne, P.J. Withers,An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993) |
[2] | S.C. Sharma, Metall. Mater. Trans. A 31, 773 (2000) |
[3] | T.W. Clyne, in Comprehensive Composite Materials, ed. by T.W. Clyne (Elsevier, Amsterdam, 2000), p. 1 |
[4] | Z.H.A. Kassam, R.J. Zhang, Z. Wang, Mater. Sci. Eng. A 203, 286 (1995) |
[5] | A. Ayyar, N. Chawla,Compos. Sci. Technol. 66, 1980(2006) |
[6] | E. Soppa, S. Schmauder, G. Fischer, J. Thesing, R. Ritter,Comput. Mater. Sci. 16, 323(1999) |
[7] | Leichmetallkompetenzzentrum-Ranshofen(LKR), Austria |
[8] | R. Mellert, Kurzdokumentation: Automatische Netzgenerierung von Pixelbildern mit PATRAN, Interner Bericht, Materialprüfungsanstalt Universität Stuttgart,(2004) |
[9] | J. Rice, D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969) |
[10] | J. Arndt, H. Majedi, W. Dahl, J. Phys. IV C6, 23 (1996) |
[11] | S. Hönle, M. Dong, L. Mishnaevsky Jr., S. Schmauder, in Proceedings of the Euromech-Mecamat, Mechanics of Materials with Intrinsic Length Scale: Physics, Experiments, Modelling and Applications, Magdeburg, ed.by A. Bertram, S. Forest, F. Sidoroff, (Institut für Mechanik, Otto-von-Guericke-Universität Magdeburg, 1998), p. 189 |
[12] | S. Höhnle, L. Mishnaevsky, S. Schmauder, Compos. Mater. Sci. 13, 56(1998) |
[13] | ABAQUS2002, Version 6.11 User’s Manual (Pawtucket,Rhode Island, USA: Version 6.11 User’s Manual (Pawtucket, Rhode Island, USA: ABAQUS Inc.) |
[14] | L. J. Seok, Dissertation, University of Stuttgart, 2008 |
[15] | N. Moes, T. Belytschko,Eng. Fract. Mech. 69, 813(2002) |
[16] | N. Moes, J. Dolbow, T. Belytschko,Int. J. Numer. Methods Eng. 46, 131(1999) |
[17] | T. Belytschko, T. Black,Int. J. Numer. Methods Eng. 45, 601(1999) |
[18] | I. Scheider, W. Brocks, in Key Engineering Materials, ed. by F.G. Buchholz, H.A. Richard, M.H. Aliabadi, vol. 251-2(Trans Tech Publications Ltd., Switzerland, 2003) pp. 313-318 |
[19] | I. Scheider, W. Brocks,Eng. Fract. Mech. 70, 1943(2003) |
[20] | H.C. Lee, J.S. Choi, K.H. Jung, Y.T. Im, J. Achiev,Mater. Manuf. Eng. 35, 2(2009) |
[21] | L. Banjs-Sills, V. Boniface, R. Eliasi,Interface Sci. 11, 339(2003) |
[22] | E. Maawad, Y. Sano, L. Wagner, H.G. Brokmeier, C. Genzel, Mater. Sci. Eng. A 536, 82 (2012) |
[23] | R. Becker, M.E. Karabin, J.C. Liu, R.E. Smelser, J. Appl. Mech. 63, 699(1996) |
[24] | M.O. Speidel, Metall. Trans. A 6, 631 (1975) |
[1] | S. Bi, B. L. Xiao, Z. H. Ji, B. S. Liu, Z. Y. Liu, Z. Y. Ma. Dispersion and Damage of Carbon Nanotubes in Carbon Nanotube/7055Al Composites During High-Energy Ball Milling Process [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 196-204. |
[2] | Dong Li, Chaoyu Wang, Yishi Su, Di Zhang, Qiubao Ouyang. Governing the Inclination Angle of Graphite Flakes in the Graphite Flake/Al Composites by Controlling the Al Particle Size via Flake Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 649-658. |
[3] | S. M. Wang, Y. Wang, Y. X. Wang, F. P. Liu, J. Cao. Stresses State and Mechanical Behaviors of the Green Body During Die Compaction and Ejection Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 605-614. |
[4] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[5] | Kuiliang Zhang, Yingju Li, Yuansheng Yang. Simulation of the Influence of Pulsed Magnetic Field on the Superalloy Melt with the Solid-Liquid Interface in Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1442-1454. |
[6] | Zhi-Peng Sun, Fu-Zhi Dai, Ben Xu, Wen-Zheng Zhang. Three-Dimensional Growth of Coherent Ferrite in Austenite: A Molecular Dynamics Study [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6): 669-676. |
[7] | Xian-Feng Sun, Hai-Tao Wang, En-Hou Han. Effect of Cr Doping on the Surface Characteristics of Ni Metal Studied with First-Principles Calculation [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 461-470. |
[8] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[9] | Kang-Xin Chen, Hou-Fa Shen. Numerical Simulation of Macrosegregation Caused by Thermal-Solutal Convection and Solidification Shrinkage Using ALE Model [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1396-1406. |
[10] | Lin Jiang, Liang Zhang, Zhi-Quan Liu. Optimal Design of Co/In/Cu Sputtering Target Assembly Using Finite Element Method and Taguchi Method [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1407-1414. |
[11] | Xu Kong, Yu-Min Wang, Xu Zhang, Qing Yang, Guo-Xing Zhang, Li-Na Yang, Rui Yang. Monitoring Damage Evolution in a Titanium Matrix Composite Shaft Under Torsion Loading Using Acoustic Emission [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1244-1252. |
[12] | Xin-Jiang Zhang, Zhong-Kui Dai, Xue-Ran Liu, Wen-Chao Yang, Meng He, Zi-Run Yang. Microstructural Characteristics and Mechanical Behavior of Spark Plasma-Sintered Cu-Cr-rGO Copper Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(7): 761-770. |
[13] | H. Y. Liu, G. Wang, Y. Hong, D. C. Zeng. Effect of Heat Treatment Time on Dy-Cu Alloy Diffusion Process in Dy-Containing Commercial Nd-Fe-B Sintered Magnets [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 496-502. |
[14] | Shu-Ming Wang, Jiang-Shan Li, Yan-Xin Wang, Xiao-Fang Zhang, Qing Ye. Thermal Shock Behavior Analysis of Tungsten-Armored Plasma-Facing Components for Future Fusion Reactor [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 515-522. |
[15] | Ke Zhao, Zhen-Yu Liu, Bo-Lyu Xiao, Ding-Rui Ni, Zong-Yi Ma. Origin of Insignificant Strengthening Effect of CNTs in T6-Treated CNT/6061Al Composites [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 134-142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||