Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (9): 1621-1632.DOI: 10.1007/s40195-024-01725-w
Previous Articles Next Articles
Qionghuan Zeng1, Yiming Chen1, Zhongsheng Yang1, Yunhao Huang2, Zhijun Wang1, Junjie Li1, Jincheng Wang1()
Received:
2024-01-24
Revised:
2024-02-27
Accepted:
2024-03-12
Online:
2024-09-10
Published:
2024-07-04
Contact:
Jincheng Wang, jchwang@nwpu.edu.cn
Qionghuan Zeng, Yiming Chen, Zhongsheng Yang, Yunhao Huang, Zhijun Wang, Junjie Li, Jincheng Wang. Effect of Temperature and Grain Boundary on Void Evolution in Irradiated Copper: A Phase-Field Study[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1621-1632.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Evolution of vacancy a and interstitial b concentration field at 1073 K; c line profile of vacancy and interstitial concentration (white line) across a void in a
Fig. 3 a Changes in porosity over time and the corresponding void morphology during stage II; b variation of average void diameter with time during stage III
Fig. 6 a Avrami exponents at different temperatures; b the average vacancy concentration (${c}_{\text{v}}$) and interstitial concentration (${c}_{\text{i}}$) in the matrix at the beginning of void nucleation
Fig. 7 a Evolution of vacancy and interstitial concentration in polycrystal at 973 K. Variation of the average diameter of voids b and number of voids c in polycrystal and single crystal over time
Fig. 8 a Width of VDZs at different temperatures in polycrystal at 973 K; b the nucleation-growth rate and c the porosity growth rate ($\text{d}p/\text{d}t$) in polycrystal with different grain sizes at different temperatures
Fig. 9 a Schematics of void evolution in polycrystal with different grain sizes at different temperatures; b variation of void growth rate with temperatures; c variation of vacancy concentration along GB vertical direction at different temperatures. ${c}_{\text{v}0}$ represents the vacancy concentration required for critical nucleation. ${w}_{1}$ and ${w}_{2}$ represent VDZs width at temperature ${T}_{1}$ and ${T}_{2}$, respectively
[1] | L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, R.E. Stoller, J. Nucl. Mater. 329-333, 166 (2004) |
[2] | S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2013) |
[3] | S. Chu, A. Majumdar, Nature 488, 294 (2012) |
[4] | D.J. Mazey, D.E.J. Bolster, W. Hanks, J. Nucl. Mater. 172, 19 (1990) |
[5] | A.M. Robinson, P.D. Edmondson, C. English, S. Lozano-Perez, G. Greaves, J.A. Hinks, S.E. Donnelly, C.R.M. Grovenor, Scr. Mater. 131, 108 (2017) |
[6] |
P.J. Ungar, T. Halicioglu, W.A. Tiller, Phys. Rev. B 50, 7344 (1994)
PMID |
[7] | W.Z. Han, M.J. Demkowicz, E.G. Fu, Y.Q. Wang, A. Misra, Acta Mater. 60, 6341 (2012) |
[8] | N. Akasaka, K. Hattori, S. Onose, S. Ukai, J. Nucl. Mater. 271-272, 370 (1999) |
[9] | Q. Xu, T. Yoshiie, J. Nucl. Mater. 307-311, 380 (2002) |
[10] | R. Bullough, R.S. Nelson, Phys. Technol. 5, 29 (1974) |
[11] | S.L. Dudarev, A.A. Semenov, C.H. Woo, Phys. Rev. B 67, 094103 (2003) |
[12] | F.A. Garner, J.F. Stubbins, J. Nucl. Mater. 212-215, 1298 (1994) |
[13] | M.A. Shaikh, M. Ahmed, J.I. Akhter, J. Nucl. Mater. 217, 200 (1994) |
[14] | Y. Satoh, S. Abe, H. Matsui, I. Yamagata, J. Nucl. Mater. 367-370, 972 (2007) |
[15] | S. Liu, W. Lin, D. Chen, B. Han, S. Zhao, F. He, H. Niu, J.J. Kai, J. Nucl. Mater. 557, 153261 (2021) |
[16] | C. Fan, R.G.S. Annadanam, Z. Shang, J. Li, M. Li, H. Wang, A. El-Azab, X. Zhang, Acta Mater. 201, 504 (2020) |
[17] | B.N. Singh, A.J.E. Foreman, Philos. Mag. 29, 847 (2006) |
[18] | M. Song, Y.D. Wu, D. Chen, X.M. Wang, C. Sun, K.Y. Yu, Y. Chen, L. Shao, Y. Yang, K.T. Hartwig, X. Zhang, Acta Mater. 74, 285 (2014) |
[19] | B.N. Singh, Philos. Mag. 28, 1409 (1973) |
[20] | S.J. Zinkle, K. Farrell, J. Nucl. Mater. 168, 262 (1989) |
[21] | O. El-Atwani, J.E. Nathaniel, A.C. Leff, B.R. Muntifering, J.K. Baldwin, K. Hattar, M.L. Taheri, J. Nucl. Mater. 484, 236 (2017) |
[22] | O. El-Atwani, J.A. Hinks, G. Greaves, J.P. Allain, S.A. Maloy, Mater. Res. Lett. 5, 343 (2017) |
[23] | M. Wurmshuber, D. Frazer, M. Balooch, I. Issa, A. Bachmaier, P. Hosemann, D. Kiener, Mater. Charact. 171, 110822 (2021) |
[24] | X. Wang, Q. Yan, G.S. Was, L. Wang, Scr. Mater. 112, 9 (2016) |
[25] | Z. Zhu, H. Huang, O. Muránsky, J. Liu, Z. Zhu, Y. Huang, J. Nucl. Mater. 544, 152694 (2021) |
[26] | A.D. Brailsford, R. Bullough, J. Nucl. Mater. 44, 121 (1972) |
[27] | L.K. Mansur, J. Nucl. Mater. 216, 97 (1994) |
[28] | N.M. Ghoniem, G.L. Kulcinski, Radiat. Eff. 41, 81 (1979) |
[29] | L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002) |
[30] | N. Moelans, B. Blanpain, P. Wollants, Calphad 32, 268 (2008) |
[31] | Y. Li, S. Hu, X. Sun, M. Stan, N.P.J. Comput, Mater. 3, 16 (2017) |
[32] | W. Yang, X. Jiang, X. Tian, H. Hou, Y. Zhao, J. Mater. Res. Technol. 22, 1307 (2023) |
[33] | Y. Zhao, J. Mater. Res. Technol. 21, 546 (2022) |
[34] | S. Hu, C.H. Henager, J. Nucl. Mater. 394, 155 (2009) |
[35] | W.B. Liu, N. Wang, Y.Z. Ji, P.C. Song, C. Zhang, Z.G. Yang, L.Q. Chen, J. Nucl. Mater. 479, 316 (2016) |
[36] | S.Y. Hu, C.H. Henager Jr, Acta Mater. 58, 3230 (2010) |
[37] | Y. Li, S. Hu, X. Sun, F. Gao, C.H. Henager, M. Khaleel, J. Nucl. Mater. 407, 119 (2010) |
[38] | Y. Jiang, W. Liu, W. Li, Z. Sun, Y. Xin, P. Chen, D. Yun, Comput. Mater. Sci. 188, 110176 (2021) |
[39] | G.S. Was, Fundamentals of radiation materials science: metals and alloys (Springer, Verlag Berlin Heidelberg, 2007) |
[40] | P.C. Millett, A. El-Azab, S. Rokkam, M. Tonks, D. Wolf, Comput. Mater. Sci. 50, 949 (2011) |
[41] | B. Fu, W. Liu, Z. Li, Appl. Surf. Sci. 256, 6899 (2010) |
[42] | Y. Li, S. Hu, X. Sun, F. Gao, C.H. Henager, M. Khaleel, Sci. China: Phys. Mech. Astron. 54, 856 (2011) |
[43] | Y. Wang, J. Ding, J. Zhao, Nucl. Instrum. Methods Phys. Res. Sect. B 453, 50 (2019) |
[44] | Q. Wu, Z. Wang, F. He, Z. Yang, J. Li, J. Wang, J. Mater. Sci. Technol. 128, 71 (2022) |
[45] | X. Ding, J. Zhao, H. Huang, S. Ding, Y. Huo, J. Nucl. Mater. 480, 120 (2016) |
[46] | J.W. Christian, The theory of transformations in metals and alloys (Pergamon Press, Oxford, 1965) |
[47] |
A.J. Ardell, V. Ozolins, Nat. Mater. 4, 309 (2005)
PMID |
[48] | G.J. Liao, R.L. Gall, G. Saindrenan, Mater. Sci. Technol. 14, 411 (1998) |
[49] | S.G. Kim, D.I. Kim, W.T. Kim, Y.B. Park, Phys. Rev. E 74, 061605 (2006) |
[50] | C.W. Chen, R.W. Buttry, Radiat. Eff. 56, 219 (2006) |
[51] | B.N. Singh, Philos. Mag. 29, 25 (1974) |
[52] | K.C. Russell, Acta Metall. 19, 753 (1971) |
[53] | H. Ullmaier, W. Schilling, Radiation damage in metallic reactor materials (Physics of Modern Materials, Vienna, 1980) |
[54] | P.A. Thorsen, J.B. Bilde-Sørensen, B.N. Singh, Scr. Mater. 51, 557 (2004) |
[55] | J.E. Nathaniel, P.K. Suri, E.M. Hopkins, J. Wen, P. Baldo, M. Kirk, M.L. Taheri, Acta Mater. 226, 117624 (2022) |
[56] | Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, S. Okuda, J. Nucl. Mater. 297, 355 (2001) |
[1] | Lingyu Zhao, Wei Zhu, Chao Zhang, Yunchang Xin, Changjian Yan, Yao Cheng, Zhaoyang Jin. Detwinning and Anneal-Hardening Behaviors of Pre-Twinned AZ31 Alloys under Cryogenic Loading [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1551-1563. |
[2] | J. X. Cai, B. M. Shi, N. Li, Y. Liu, Z. G. Zhang, Y. N. Zan, Q. Z. Wang, B. L. Xiao, Z. Y. Ma. Effect of Al2O3 on the Mechanical Properties of (B4C + Al2O3)/Al Neutron Absorbing Materials [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1411-1420. |
[3] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[4] | Lan Zhang, Dao-Kui Xu, Bao-Jie Wang, Cui-Lan Lu, Shuo Wang, Xiang-Bo Xu, Dong-Liang Wang, Xin Lv, En-Hou Han. Mechanical Behavior and Failure Mechanism of an As-Extruded Mg-11wt%Y Alloy at Elevated Temperature [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 969-981. |
[5] | Qian-Long Ren, Shuai Yuan, Shi-Yu Luan, Jin-Hui Wang, Xiao-Wei Li, Xiao-Yu Liu. High-Temperature Stability of Mg-1Al-12Y Alloy Containing LPSO Phase and Mechanism of Its Portevin-Le Chatelier (PLC) Effect [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 982-998. |
[6] | Guodong Song, Conghui Zhang, Yunchang Xin, Nobuhiro Tsuji, Xinde Huang, Bo Guan, Xiaomei He. Understanding the Mechanism for the In-Plane Yielding Anisotropy of a Hot-Rolled Zirconium Plate [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1066-1076. |
[7] | Hasfi F. Nurly, Jinhu Zhang, Dechun Ren, Yusheng Cai, Haibin Ji, Dongsheng Xu, Zhicheng Dong, Hao Wang, Qingmiao Hu, Jiafeng Lei, Rui Yang. Refinement of α′ Martensite by Oxygen in Selective Laser Melted Ti-6Al-4V [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 777-792. |
[8] | Wenting Wang, Jingjun Xu, Jun Zuo, Ke Ma, Yang Li, Guangqi He, Meishuan Li. Oxidation Resistance of In Situ Reaction/Hot Pressing Synthesized Ti2AlC-20% TiB2 Composite at 600-900 °C in Air [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 739-748. |
[9] | Qiang Li, Xing-Ran Li, Bai-Xin Dong, Xiao-Long Zhang, Shi-Li Shu, Feng Qiu, Lai-Chang Zhang, Zhi-Hui Zhang. Metallurgy and Solidification Microstructure Control of Fusion-Based Additive Manufacturing Fabricated Metallic Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 29-53. |
[10] | Xi-Zhao Shi, Zhong-Yu Cui, Jie Li, Bing-Chen Hu, Yi-Qiang An, Xin Wang, Hong-Zhi Cui. Atmospheric Corrosion of AZ31B Magnesium Alloy in the Antarctic Low-Temperature Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1421-1432. |
[11] | Xu Lu, Dong Wang, Di Wan, Xiaofei Guo, Roy Johnsen. Reveal Hydrogen Behavior at Grain Boundaries in Fe-22Mn-0.6C TWIP Steel via In Situ Micropillar Compression Test [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1095-1104. |
[12] | Guo-Dong Liu, Xue-Mei Luo, Ji-Peng Zou, Bin Zhang, Guang-Ping Zhang. Effects of Grain Size and Cryogenic Temperature on the Strain Hardening Behavior of VCoNi Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 973-986. |
[13] | Yusheng Zhang, Jiang Lai, Hongliang Ming, Lixia Gao, Jianqiu Wang, En-Hou Han. Effect of Normal Force on Fretting Wear Behavior of Zirconium Alloy Tube in Simulated Primary Water of PWR [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 865-880. |
[14] | Xuelin Wang, Wenjuan Su, Zhenjia Xie, Xiucheng Li, Wenhao Zhou, Chengjia Shang, Qichen Wang, Jian Bai, Lianquan Wu. Microstructure Evolution of Heat-Affected Zone in Submerged Arc Welding and Laser Hybrid Welding of 690 MPa High Strength Steel and its Relationship with Ductile-Brittle Transition Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 623-636. |
[15] | X. J. Guan, Z. P. Jia, M. A. Nozzari Varkani, X. W. Li. Effect of Grain Boundary Engineering on the Work Hardening Behavior of AL6XN Super-Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(4): 681-693. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||