Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (4): 537-550.DOI: 10.1007/s40195-021-01277-3
Previous Articles Next Articles
Yubin Du1,2, Xiaofeng Hu1(), Yuanyuan Song1, Yangpeng Zhang1, Lijian Rong1(
)
Received:
2021-03-01
Revised:
2021-04-14
Accepted:
2021-04-21
Online:
2021-07-10
Published:
2021-07-10
Contact:
Xiaofeng Hu,Lijian Rong
About author:
Lijian Rong, ljrong@imr.ac.cnYubin Du, Xiaofeng Hu, Yuanyuan Song, Yangpeng Zhang, Lijian Rong. Effect of Nanoscale Cu-Riched Clusters on Strength and Impact Toughness in a Tempered Cu-Bearing HSLA Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 537-550.
Add to citation manager EndNote|Ris|BibTeX
C | Ni | Mn | Mo | Cr | Si | S | P | Nb | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|
0.041 | 4.01 | 1.00 | 0.56 | 0.95 | 0.22 | 0.005 | 0.007 | 0.05 | 1.40 | Bal. |
Table 1 Chemical compositions of the experimental steel (wt%)
C | Ni | Mn | Mo | Cr | Si | S | P | Nb | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|
0.041 | 4.01 | 1.00 | 0.56 | 0.95 | 0.22 | 0.005 | 0.007 | 0.05 | 1.40 | Bal. |
Fig. 3 Misorientation distribution of grain boundaries a and misorientation angle distribution maps b of the as-quenched 1.4Cu steel (The black lines and red lines denote HAGB (misorientation angle > 15°) and LAGB (misorientation angle 2-15°), respectively.)
Tempering temperature (°C) | Percentage of HAGB (%) | EGS (μm) |
---|---|---|
As-quenched | 41.5 | 1.96 |
450 | 41.6 | 2.00 |
550 | 41.9 | 2.05 |
650 | 40.6 | 2.00 |
Table 2 Percentage of HAGB and EGS of the as-quenched and tempered 1.4Cu steel
Tempering temperature (°C) | Percentage of HAGB (%) | EGS (μm) |
---|---|---|
As-quenched | 41.5 | 1.96 |
450 | 41.6 | 2.00 |
550 | 41.9 | 2.05 |
650 | 40.6 | 2.00 |
Fig. 4 Bright-field TEM images for the as-quenched sample a and the samples tempered at 450 °C b, 550 °C c, 650 °C d, and the inset showing EDS mapping images d, respectively
Fig. 5 Cu atoms maps and the Cu-riched particles characterized by 5 at% Cu isoconcentration surface for the as-quenched sample a and the samples tempered at 450 °C b, 550 °C c, 650 °C d
Fig. 7 C atoms distribution map and Cu-riched particles characterized by 5 at% Cu isoconcentration surface a and one-dimensional (1-D) composition profiles obtained by a cylindrical probe (30 nm in diameter) through the C-riched interface for the 1.4Cu steel tempered at 550 °C b
Fig. 8 Equilibrium solubility of Cu [Cu]α-Fe a and diffusion coefficient of Cu $D_{{_{{\text{Cu}}} }}^{{\alpha - \text{Fe}}}$ in α-Fe b at different temperatures
Samples | As-quenched | 450 °C | 550 °C | 650 °C |
---|---|---|---|---|
Dislocation density (m-2) | 10.7 × 1014 | 5.9 × 1014 | 4.2 × 1014 | 2.3 × 1014 |
Table 3 Dislocation density of the as-quenched and tempered 1.4Cu steel
Samples | As-quenched | 450 °C | 550 °C | 650 °C |
---|---|---|---|---|
Dislocation density (m-2) | 10.7 × 1014 | 5.9 × 1014 | 4.2 × 1014 | 2.3 × 1014 |
Samples | σ0 | σs | σg | σdis | σcut | σbypass | $\sqrt {\left( {\sigma _{{\text{dis}}}^{{2}} + \sigma _{{_{{\text{Cu}}} }}^{{2}} } \right)} $ | σy(cal) | σy(exp) |
---|---|---|---|---|---|---|---|---|---|
As-quenched | 54 | 274 | 156 | 450 | - | - | 450 | 934 | 944 |
450 °C | 54 | 223 | 156 | 334 | 492 | - | 595 | 1028 | 1053 |
550 °C | 54 | 228 | 156 | 283 | 161 | 239 | 490 | 928 | 948 |
650 °C | 54 | 239 | 156 | 209 | - | 120 | 241 | 690 | 719 |
Table 4 Contributions of each strengthening mechanism to the yield strength for the as-quenched and tempered samples (MPa)
Samples | σ0 | σs | σg | σdis | σcut | σbypass | $\sqrt {\left( {\sigma _{{\text{dis}}}^{{2}} + \sigma _{{_{{\text{Cu}}} }}^{{2}} } \right)} $ | σy(cal) | σy(exp) |
---|---|---|---|---|---|---|---|---|---|
As-quenched | 54 | 274 | 156 | 450 | - | - | 450 | 934 | 944 |
450 °C | 54 | 223 | 156 | 334 | 492 | - | 595 | 1028 | 1053 |
550 °C | 54 | 228 | 156 | 283 | 161 | 239 | 490 | 928 | 948 |
650 °C | 54 | 239 | 156 | 209 | - | 120 | 241 | 690 | 719 |
Fig. 11 Impact fracture surfaces tested at - 50 °C for the as-quenched sample a and the samples tempered at 450 °C b, 550 °C c, 650 °C d (The insets are macro SEM fractographs.)
Fig. 12 Strain maps of the as-quenched sample a and the sample tempered at 450 °C b (The black lines and red lines denote the high-angle grain boundaries (misorientation angle > 15°) and low-angle grain boundaries (misorientation angle 2-15°), respectively.)
Fig. 13 SEM images of the cross-sectional areas adjacent to the impact fracture surfaces for the as-quenched 1.4Cu steel a and the samples tempered at 450 °C b, 550 °C c, and 650 °C d
[1] |
A. Ghosh, B. Mishra, S. Das, S. Chatterjee, Mater. Sci. Eng. A 396, 320 (2005)
DOI URL |
[2] |
M. Kapoor, D. Isheim, G. Ghosh, S. Vaynman, M.E. Fine, Y.W. Chung, Acta Mater. 73, 56 (2014)
DOI URL |
[3] |
Z.B. Jiao, J.H. Luan, Z.W. Zhang, M.K. Miller, W.B. Ma, C.T. Liu, Acta Mater. 61, 5996 (2013)
DOI URL |
[4] | Q.D. Liu, Y.H. Chen, C.W. Li, J.F. Gu, Acta Metall. Sin. -Engl. Lett. 31, 465 (2018) |
[5] |
Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97, 58 (2015)
DOI URL |
[6] | Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Yang, H. Su, Acta Metall. Sin. 55, 783 (2019) |
[7] |
Y. Zou, Y.B. Xu, D.T. Han, Z.P. Hu, H. Song, R.D.K. Misra, L.F. Cao, S.Q. Chen, Mater. Sci. Eng. A 729, 423 (2018)
DOI URL |
[8] |
S.K. Dhua, D. Mukerjee, D.S. Sarma, Metall. Mater. Trans. A 32, 2259 (2001)
DOI URL |
[9] |
Y. Zhao, X. Tong, X.H. Wei, S.S. Xu, S. Lan, X.L. Wang, Z.W. Zhang, Int. J. Plast. 116, 203 (2019)
DOI URL |
[10] |
S.W. Thompson, Mater. Sci. Eng. A 711, 424 (2018)
DOI URL |
[11] |
M. Kapoor, D. Isheim, S. Vaynman, M.E. Fine, Y.W. Chung, Acta Mater. 104, 166 (2016)
DOI URL |
[12] | Y.B. Du, X.F. Hu, S.Q. Zhang, Y.Y. Song, H.C. Jiang, L.J. Rong, Acta Metall. Sin. 56, 1343 (2020) |
[13] |
Z. Arechabaleta, P.V. Liempt, J. Sietsma, Acta Mater. 115, 314 (2016)
DOI URL |
[14] |
F. HajyAkbary, J. Sietsma, A.J. Böttger, M.J. Santofimia, Mater. Sci. Eng. A 639, 208 (2015)
DOI URL |
[15] |
J. Sun, S.T. Wei, S.P. Lu, Mater. Sci. Eng. A 772, 138739 (2020)
DOI URL |
[16] |
D. Jain, D. Isheim, A.H. Hunter, D.N. Seidman, Metall. Mater. Trans. A 47, 3860 (2016)
DOI URL |
[17] |
H.W. Luo, X.H. Wang, Z.B. Liu, Z.Y. Yang, J. Mater. Sci. Technol. 51, 130 (2020)
DOI URL |
[18] |
N.S. Lim, C.W. Bang, S. Das, H.W. Jin, R. Ayer, Met. Mater. Int. 18, 87 (2012)
DOI URL |
[19] |
Z.T. Li, F. Chai, L. Yang, X.B. Luo, C.F. Yang, Mater. Des. 191, 108637 (2020)
DOI URL |
[20] |
G. Salje, M.F. Kniepmeier, J. Appl. Phys. 48, 1833 (1977)
DOI URL |
[21] |
Y.J. Li, D. Ponge, P. Choi, D. Raabe, Scr. Mater. 96, 13 (2015)
DOI URL |
[22] |
Q.D. Liu, S.J. Zhao, MRS Commun. 2, 127 (2012)
DOI URL |
[23] |
N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Acta Mater. 83, 383 (2015)
DOI URL |
[24] | Q.L. Yong, Second Phases in Structural Steels (Metallurgical Industry Press, Beijing, 2006), p.8 |
[25] |
J.E. Bailey, P.B. Hirsch, Philos. Mag. 5, 485 (1960)
DOI URL |
[26] |
M. Huang, P.E.J. Rivera, O. Bouaziz, S. Zwaag, Mater. Sci. Technol. 25, 833 (2013)
DOI URL |
[27] | Y.R. Wen, A. Hirata, Z.W. Zhang, T. Fujita, C.T. Liu, J.H. Jiang, M.W. Chen, Acta Mater., 61, 2133 (2013) |
[28] |
M.E. Fine, D. Isheim, Scr. Mater. 53, 115 (2005)
DOI URL |
[29] |
K.C. Russell, L.M. Browns, Acta Mater. 20, 969 (1972)
DOI URL |
[30] |
C.R. Hutchinson, M. Goune, A. Redjaimia, Acta Mater. 55, 213 (2007)
DOI URL |
[31] |
S.S. Xu, Y. Zhao, D. Chen, L.W. Sun, L. Chen, X. Tong, C.T. Liu, Z.W. Zhang, Int. J. Plast. 113, 99 (2019)
DOI URL |
[32] |
H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu, Acta Mater. 172, 150 (2019)
DOI |
[33] | J.Z. Tan, Acta Metall. Sin. -Engl. Lett. 17, 139 (2004) |
[34] |
Q.D. Liu, H.M. Wen, H. Zhang, J.F. Gu, C.W. Li, E.J. Lavernia, Metall. Mater. Trans. A, 47, 1960 (2016)
DOI URL |
[35] |
Z.Z. Chen, N. Kioussis, N. Ghoniem, Phys. Rev. B 80, 184104 (2009)
DOI URL |
[36] |
S.Y. Hu, Y.L. Li, K. Watanabe, Model. Simul. Mater. Sc. 7, 641 (1999)
DOI URL |
[37] | S.Q. Zhang, X.F. Hu, Y.B. Du, H.C. Jiang, H.Y. Pang, L.J. Rong, Acta Metall. Sin. 56, 1227 (2020) |
[38] | W.C. Dong, M.Y. Wen, H.Y. Pang, S.P. Lu, Acta Metall. Sin. -Engl. Lett. 33, 391 (2020) |
[39] | X.B. Shi, W. Yan, M.C. Yan, W. Wang, Z.G. Yang, Y.Y. Shan, K. Yang, Acta Metall. Sin. -Engl. Lett. 30, 601 (2017) |
[40] | Y.H. Li, Z.H. Jiang, Z.D. Yang, J.S. Zhu, Acta Metall. Sin. -Engl. Lett. 33, 1346 (2020) |
[41] |
T. Hanamura, F. Yin, K. Nagai, ISIJ Int. 44, 610 (2004)
DOI URL |
[42] |
J.W. Morris, ISIJ Int. 51, 1569 (2011)
DOI URL |
[43] | P. Lejcek, Grain Boundary Segregation in Metals (Springer, Berlin, Heidelberg, 2010), p. 177 |
[1] | Hao Tang, Yaoxiang Geng, Shunuo Bian, Junhua Xu, Zhijie Zhang. An Ultra-High Strength Over 700 MPa in Al-Mn-Mg-Sc-Zr Alloy Fabricated by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 466-474. |
[2] | Hongchi Ma, Baijie Zhao, Yi Fan, Kui Xiao, Jinbin Zhao, Xuequn Cheng, Xiaogang Li. Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 565-578. |
[3] | Guonan Ma, Dong Wang, Bolv Xiao, Zongyi Ma. Effect of Particle Size on Mechanical Properties and Fracture Behaviors of Age-Hardening SiC/Al-Zn-Mg-Cu Composites [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1447-1459. |
[4] | Jie Wei, Qudong Wang, Li Zhang, Mahmoud Ebrahimi, Haiyan Jiang, Wenjiang Ding. Effects of Gd Addition on the Microstructure and Tensile Properties of Mg-4Al-5RE Alloy Produced by Three Different Casting Methods [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1361-1374. |
[5] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[6] | Qiu Zhang, Wencai Liu, Guohua Wu, Liang Zhang, Wenjiang Ding. Effect of Zn Addition on the Microstructure and Mechanical Properties of Cast Mg-10Gd-3.5Er-xZn-0.5Zr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1505-1517. |
[7] | Yang Bai, Wei-Li Cheng, Shi-Chao Ma, Jun Zhang, Chen Guo, Yao Zhang. Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg-8Sn-4Zn-2Al Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 487-495. |
[8] | Ke Zhang, Zhao-Dong Li, Xin-Jun Sun, Qi-Long Yong, Jun-Wei Yang, Yuan-Mei Li, Pei-Lin Zhao. Development of Ti-V-Mo Complex Microalloyed Hot-Rolled 900-MPa-Grade High-Strength Steel [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(5): 641-648. |
[9] | H.Samareh Salavati Pour,F. Berto,Y. Alizadeh. A New Analytical Expression for the Relationship Between the Charpy Impact Energy and Notch Tip Position for Functionally Graded Steels [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(3): 232-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||