Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (2): 304-316.DOI: 10.1007/s40195-021-01248-8
Previous Articles Next Articles
Sharafadeen Kunle Kolawole1,2,3, Ling Ren2(), Muhammad Ali Siddiqui1,2, Ihsan Ullah1,2, Hai Wang2, Shuyuan Zhang2, Ji Zhang2, Ke Yang2(
)
Received:
2020-12-16
Revised:
2021-01-19
Accepted:
2021-04-06
Online:
2022-02-10
Published:
2021-05-08
Contact:
Ling Ren,Ke Yang
About author:
Ke Yang, kyang@imr.ac.cnSharafadeen Kunle Kolawole, Ling Ren, Muhammad Ali Siddiqui, Ihsan Ullah, Hai Wang, Shuyuan Zhang, Ji Zhang, Ke Yang. Optimized Mechanical Properties, Corrosion Resistance and Bactericidal Ability of Ti-15Zr-xCu Biomedical Alloys During Aging Treatment[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 304-316.
Add to citation manager EndNote|Ris|BibTeX
Constituent element | TZ (wt%) | TZC-3 (wt%) | TZC-5 (wt%) | TZC-7 (wt%) |
---|---|---|---|---|
Ti | Bal | Bal | Bal | Bal |
Zr | 14.90 | 15.20 | 14.70 | 15.05 |
Cu | 0.03 | 2.89 | 5.02 | 6.97 |
Fe | 0.02 | 0.05 | 0.06 | 0.02 |
C | 0.04 | 0.03 | 0.05 | 0.05 |
O | 0.06 | 0.07 | 0.09 | 0.07 |
N | 0.006 | 0.004 | 0.05 | 0.009 |
H | 0.003 | 0.003 | 0.003 | 0.002 |
Table 1 Chemical compositions of the Ti-15Zr alloy and Ti-15Zr-xCu alloys
Constituent element | TZ (wt%) | TZC-3 (wt%) | TZC-5 (wt%) | TZC-7 (wt%) |
---|---|---|---|---|
Ti | Bal | Bal | Bal | Bal |
Zr | 14.90 | 15.20 | 14.70 | 15.05 |
Cu | 0.03 | 2.89 | 5.02 | 6.97 |
Fe | 0.02 | 0.05 | 0.06 | 0.02 |
C | 0.04 | 0.03 | 0.05 | 0.05 |
O | 0.06 | 0.07 | 0.09 | 0.07 |
N | 0.006 | 0.004 | 0.05 | 0.009 |
H | 0.003 | 0.003 | 0.003 | 0.002 |
Alloy composition (wt%) | Coined nomenclature | Heat treatment conditions | Coined nomenclature |
---|---|---|---|
Ti-15Zr | TZ | Solution treatment at 1050 °C for 2 h and water-quenched | ST |
Ti-15Zr-3Cu | TZC-3 | Solution-treated at 1050 °C for 2 h, water-quenched + aging at 450 °C for 10 h, then air-cooled | STA 450-10 |
Ti-15Zr-5Cu | TZC-5 | Solution-treated at 1050 °C for 2 h, water-quenched + aging at 540 °C for 6 h, then air-cooled | STA 540-6 |
Ti-15Zr-7Cu | TZC-7 | Solution-treated at 1050 °C for 2 h, water-quenched + aging at 660 °C for 4 h, then air-cooled | STA 660-4 |
Table 2 Nomenclatures for the composition of different alloys and heat treatment conditions
Alloy composition (wt%) | Coined nomenclature | Heat treatment conditions | Coined nomenclature |
---|---|---|---|
Ti-15Zr | TZ | Solution treatment at 1050 °C for 2 h and water-quenched | ST |
Ti-15Zr-3Cu | TZC-3 | Solution-treated at 1050 °C for 2 h, water-quenched + aging at 450 °C for 10 h, then air-cooled | STA 450-10 |
Ti-15Zr-5Cu | TZC-5 | Solution-treated at 1050 °C for 2 h, water-quenched + aging at 540 °C for 6 h, then air-cooled | STA 540-6 |
Ti-15Zr-7Cu | TZC-7 | Solution-treated at 1050 °C for 2 h, water-quenched + aging at 660 °C for 4 h, then air-cooled | STA 660-4 |
Alloys | Constituent phase(s)/element(s) present | Ti (wt%) | Zr (wt%) | Cu (wt%) | Relative composition Ti2Cu (wt%) | Relative composition Zr2Cu (wt%) | Relative composition Zr7Cu10 (wt%) |
---|---|---|---|---|---|---|---|
0-450-10 | α-(Ti, Zr) | 70.90 | 28.70 | 0.30 | - | - | - |
3-450-10 | α-(Ti, Zr) + Ti2Cu | 63.70 | 32.30 | 0.50 | 3.40 | - | - |
5-450-10 | Zr7Cu10 + Ti2Cu, α + β—(Ti) | 57.10 | 14.40 | 17 | - | - | 11.40 |
7-450-10 | Zr7Cu10 + Ti2Cu, α + β—(Ti) | 52.90 | 12.30 | 3.60 | 21.30 | - | 9.80 |
0-540-6 | α-(Ti, Zr) | 81.50 | 18.30 | 0.10 | - | - | - |
3-540-6 | Cu + Ti2Cu, α + β—(Ti) | 60.20 | 6.30 | 10.20 | 23.10 | - | - |
5-540-6 | Zr2Cu + Ti2Cu, α + β—(Ti) | 56 | 12.20 | 10.10 | 10.90 | 10.70 | - |
7-540-6 | Zr2Cu + Ti2Cu, α + β—(Ti) | 55.30 | 12.50 | 12 | 11.40 | 8.70 | - |
0-660-4 | α-(Ti, Zr) | 79.40 | 20.10 | 0.40 | - | - | - |
3-660-4 | Ti2Cu, α + β-(Ti) | 50.80 | 11.40 | 17.10 | 20.60 | - | - |
5-660-4 | Zr2Cu + Ti2Cu, α + β—(Ti) | 51.60 | 9.80 | 10.40 | 18.70 | 9.40 | - |
7-660-4 | Zr2Cu + Ti2Cu, α + β—(Ti) | 50.70 | 11.10 | 11.50 | 13.80 | 10.60 | 2.30 |
Table 3 Relative composition of constituent phases/elements present in alloys after STA at different temperatures for different time
Alloys | Constituent phase(s)/element(s) present | Ti (wt%) | Zr (wt%) | Cu (wt%) | Relative composition Ti2Cu (wt%) | Relative composition Zr2Cu (wt%) | Relative composition Zr7Cu10 (wt%) |
---|---|---|---|---|---|---|---|
0-450-10 | α-(Ti, Zr) | 70.90 | 28.70 | 0.30 | - | - | - |
3-450-10 | α-(Ti, Zr) + Ti2Cu | 63.70 | 32.30 | 0.50 | 3.40 | - | - |
5-450-10 | Zr7Cu10 + Ti2Cu, α + β—(Ti) | 57.10 | 14.40 | 17 | - | - | 11.40 |
7-450-10 | Zr7Cu10 + Ti2Cu, α + β—(Ti) | 52.90 | 12.30 | 3.60 | 21.30 | - | 9.80 |
0-540-6 | α-(Ti, Zr) | 81.50 | 18.30 | 0.10 | - | - | - |
3-540-6 | Cu + Ti2Cu, α + β—(Ti) | 60.20 | 6.30 | 10.20 | 23.10 | - | - |
5-540-6 | Zr2Cu + Ti2Cu, α + β—(Ti) | 56 | 12.20 | 10.10 | 10.90 | 10.70 | - |
7-540-6 | Zr2Cu + Ti2Cu, α + β—(Ti) | 55.30 | 12.50 | 12 | 11.40 | 8.70 | - |
0-660-4 | α-(Ti, Zr) | 79.40 | 20.10 | 0.40 | - | - | - |
3-660-4 | Ti2Cu, α + β-(Ti) | 50.80 | 11.40 | 17.10 | 20.60 | - | - |
5-660-4 | Zr2Cu + Ti2Cu, α + β—(Ti) | 51.60 | 9.80 | 10.40 | 18.70 | 9.40 | - |
7-660-4 | Zr2Cu + Ti2Cu, α + β—(Ti) | 50.70 | 11.10 | 11.50 | 13.80 | 10.60 | 2.30 |
Fig. 4 SEM images of TZ, TZC-3, TZC-5 and TZC-7 alloys solution-treated and aged (STA) at a-d 450 °C for 10 h, e-h 540 °C for 6 h, and i-l 660 °C for 4 h, respectively
Fig. 5 X-ray diffractograms for the solution-treated and aged TZ, TZC-3, TZC-5, TZC-7 alloys at a 450 °C for 10 h, b 540 °C for 6 h, and c 660 °C for 4 h, respectively
Fig. 6 Ultimate tensile strengths, yield strengths and elongations of the TZ and TZC alloys: a solution-treated at 1050 °C, b solution-treated and then aged at 450 °C for 10 h, c solution-treated and then aged at 540 °C for 6 h, and d solution-treated and then aged at 660 °C for 4 h
Fig. 7 Hardness values of the ST and STA alloys at various conditions. Inset: representative indentation of alloys’ microstructures at ST and STA conditions showing martensite-like parallel and shiny marks for the ST and dimple-like dull marks for the STA alloys, respectively
Fig. 8 Representative photographs of the typical S. aureus colonization behavior on the various solution-treated and then aged (STA), a TZ, b TZC-3, c TZC-5, d TZC-7, e blank control at 450 °C for10 h, f TZ, g TZC-3, h TZC-5, i TZC-7, j blank control at 540 °C for 6 h, k TZ, l TZC-3, m TZC-5, n TZC-7, p blank control at 660 °C for 4 h, and q the respective antibacterial rates of the corresponding alloys at different conditions
Fig. 9 Potentiodynamic polarization curves for the solution-treated and aged TZ, TZC-3, TZC-5, TZC-7 alloys at a 450 °C for 10 h; b 540 °C for 6 h, and c 660 °C for 4 h, respectively
Fig. 10 Concentration of Cu ions released (in mg/L) from differently aged TZ, TZC-3, TZC-5 and TZC-7 alloys over a 35-day period showing that the minimum lethal dosage threshold (LD 50) is not crossed
[1] |
P. Wang, Y. Feng, F. Liu, L. Wu, S. Guan, Mater. Sci. Eng. C 51, 148 (2015)
DOI URL |
[2] |
Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, Materials (Basel). 7, 1709 (2014)
DOI URL |
[3] |
J. Fornell, E. Pellicer, N. Van Steenberge, S. González, A. Gebert, S. Suriñach, M.D. Baró, J. Sort, Mater. Sci. Eng. A 559, 159 (2013)
DOI URL |
[4] |
A. Fukuda, M. Takemoto, T. Saito, S. Fujibayashi, M. Neo, S. Yamaguchi, T. Kizuki, T. Matsushita, M. Niinomi, T. Kokubo, T. Nakamura, Acta Biomater. 7, 1379 (2011)
DOI PMID |
[5] |
Z. Ke, C. Yi, L. Zhang, Z.Y. He, J. Tan, Y. Jiang, Mater. Lett. 253, 335 (2019)
DOI URL |
[6] |
J.L. Gu, Y. Shao, S.F. Zhao, S.Y. Lu, G.N. Yang, S.Q. Chen, K.F. Yao, J. Alloys Compd. 725, 573 (2017)
DOI URL |
[7] |
A. Mahapatro, Mater. Sci. Eng. C 55, 227 (2015)
DOI URL |
[8] | A. Brizuela-Velasco, E. Pérez-Pevida, A. Jiménez-Garrudo, F.J. Gil-Mur, J.M. Manero, M. Punset-Fuste, D. Chávarri-Prado, M. Diéguez-Pereira, F. Monticelli, Biomed. Res. Int (2017). https://doi.org/10.1155/2017/2785863 |
[9] |
Z. Zhang, G. Zheng, H. Li, L. Yang, X. Wang, G. Qin, E. Zhang, Mater. Sci. Eng. C 94, 376 (2019)
DOI URL |
[10] |
X. He, X. Zhang, X. Wang, L. Qin, Coatings 7, 45 (2017)
DOI URL |
[11] | B. Huang, F. Jing, B. Akhavan, L. Ji, Y. Leng, D. Xie, M. Bilek, N. Huang, Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2019.109969 |
[12] |
E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, M. Li, K. Yang, Mater. Sci. Eng. C 33, 4280 (2013)
DOI URL |
[13] |
A. Gao, R. Hang, X. Huang, L. Zhao, X. Zhang, L. Wang, B. Tang, S. Ma, P.K. Chu, Biomaterials 35, 4223 (2014)
DOI URL |
[14] |
H. Liu, R. Liu, I. Ullah, S. Zhang, Z. Sun, L. Ren, K. Yang, J. Mater. Sci. Technol. 48, 130 (2020)
DOI URL |
[15] | M. Vlasea, A. Basalah, A. Azhari, R. Kandel, E. Toyserkani, Additive Manufacturing for Bone Load Bearing Applications (Elsevier Inc., 2015). |
[16] | R. Liu, K. Memarzadeh, B. Chang, Y. Zhang, Z. Ma, R.P. Allaker, L. Ren, K. Yang, Sci. Rep. 6, 29985 (2016). |
[17] |
T. Xi, M. Babar Shahzad, D. Xu, J. Zhao, C. Yang, M. Qi, K. Yang, Mater. Sci. Eng. A 675, 243 (2016)
DOI URL |
[18] |
R. Liu, Y. Tang, L. Zeng, Y. Zhao, Z. Ma, Z. Sun, L. Xiang, L. Ren, K. Yang, Dent. Mater. 34, 1112 (2018)
DOI URL |
[19] |
S.K. Kolawole, W. Hai, S. Zhang, Z. Sun, M.A. Siddiqui, I. Ullah, W. Song, F. Witte, K. Yang, J. Mater. Sci. Technol. 50, 31 (2020)
DOI URL |
[20] |
E.L. Zhang, S. Fu, R.X. Wang, H.X. Li, Y. Liu, Z.Q. Ma, G.K. Liu, C.S. Zhu, G.W. Qin, D.F. Chen, Rare Met. 38, 476 (2019)
DOI URL |
[21] |
T. Xi, M.B. Shahzad, D. Xu, Z. Sun, J. Zhao, C. Yang, M. Qi, K. Yang, Mater. Sci. Eng. C 71, 1079 (2017)
DOI URL |
[22] | M. Bao, Y. Liu, X. Wang, L. Yang, S. Li, J. Ren, G. Qin, E. Zhang, Bioact. Mater. 3, 28 (2018) |
[23] |
J.H. Wu, K.K. Chen, C.Y. Chao, Y.H. Chang, J.K. Du, Mater. Sci. Eng. C 108, 110433 (2020)
DOI URL |
[24] |
E. Zhang, X. Wang, M. Chen, B. Hou, Mater. Sci. Eng. C 69, 1210 (2016)
DOI URL |
[25] |
X. Yu, Z. Zhao, D. Shi, X. Dong, X. Shi, C. Li, J. Zhao, H. Dai, Metals (Basel). 10, 1 (2020)
DOI URL |
[26] |
P. Mukhopadhyay, S.K. Menon, S. Banerjee, R.C. Krishnan, Metall. Trans. A 10, 1071 (1979)
DOI URL |
[27] |
A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, C Wen, Acta Biomater. 8, 1661 (2012)
DOI PMID |
[28] |
Y. Alshammari, F. Alqattan, F. Yang, L. Bolzoni, Int. J. Refract. Met. Hard Mater. 91, 105267 (2020)
DOI URL |
[29] |
T. Figueiredo Azevedo, T. Nunes Lima, J. Garcia de Blas, L. Carlos Pereira, S. Griza, J. Mech. Behav. Biomed. Mater. 75, 33 (2017)
DOI PMID |
[30] |
J. Lin, X. Tong, Z. Shi, D. Zhang, L. Zhang, K. Wang, A. Wei, L. Jin, J. Lin, Y. Li, C. Wen, Acta Biomater. 106, 410 (2020)
DOI URL |
[31] | H. Huang, H. Liu, L.S. Wang, Y.H. Li, S.O. Agbedor, J. Bai, F. Xue, J.H. Jiang, Acta Metall. Sin. Engl. Lett. 33, 1191 (2020) |
[32] | Y. Zhuang, S. Zhang, K. Yang, L. Ren, K. Dai, J. Biomed. Mater. Res. Part B Appl. Biomater 108B, 484 (2020) |
[33] |
T. Liang, Y. Wang, L. Zeng, Y. Liu, L. Qiao, S. Zhang, R. Zhao, G. Li, R. Zhang, J. Xiang, F. Xiong, A. Shanaghi, H. Pan, Y. Zhao, Appl. Surf. Sci. 509, 144717 (2020)
DOI URL |
[34] |
Y.H. Li, N. Chen, H.T. Cui, F. Wang, J. Alloys Compd. 723, 967 (2017)
DOI URL |
[35] |
M. Mohammadi, S.A. Mousavi Shaegh, M. Alibolandi, M.H. Ebrahimzadeh, A. Tamayol, M.R. Jaafari, M. Ramezani, J. Control Release 274, 35 (2018)
DOI URL |
[36] |
R. Liu, Z. Ma, S. Kunle Kolawole, L. Zeng, Y. Zhao, L. Ren, K. Yang, J. Mater. Sci. Mater. Med. 30, 75 (2019)
DOI URL |
[37] |
C. Peng, Y. Zhao, S. Jin, J. Wang, R. Liu, H. Liu, W. Shi, S.K. Kolawole, L. Ren, B. Yu, K. Yang, A.C.S. Appl, Mater. Interfaces 11, 125 (2019)
DOI URL |
[38] |
E. Zhang, L. Zheng, J. Liu, B. Bai, C. Liu, Mater. Sci. Eng. C 46, 148 (2015)
DOI URL |
[39] | Z. Ma, M. Li, R. Liu, L. Ren, Y. Zhang, H. Pan, Y. Zhao, K. Yang, J. Mater. Sci. Mater. Med. (2016). https://doi.org/10.1007/s10856-016-5698-1 |
[40] |
Y. Alshammari, F. Yang, L. Bolzoni, J. Mech. Behav. Biomed. Mater. 95, 232 (2019)
DOI PMID |
[41] | S. Moniri Javadhesari, S. Alipour, M.R. Akbarpour, Colloids Surf. B Biointerfaces (2020). https://doi.org/10.1016/j.colsurfb.2020.110889 |
[42] |
A. Alhussein, S. Achache, R. Deturche, F. Sanchette, C. Pulgarin, J. Kiwi, S. Rtimi, Colloids Surf. B Biointerfaces 152, 152 (2017)
DOI URL |
[1] | Chongfeng Sun, Shengqi Xi, Xiaofeng Dang, Jianping Li, Yongchun Guo, Zhong Yang, Yaping Bai. Formation of Fe-19 wt%Cr-9 wt%Ni Nanocrystalline Alloy with Excellent Corrosion Resistance: Phase Transition and Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 825-833. |
[2] | Zheng-Zheng Yin, Wei Zhao, Jing Xu, Rong-Chang Zeng, Feng-Qin Wang, Zhen-Lin Wang. Corrosion Resistance of Superhydrophobic Mg(OH)2/Calcium Myristate Composite Coating on Magnesium Alloy AZ31 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1618-1634. |
[3] | Ben-Qi Xu, Hui Zhang, Dong Ma, Qun-Shuang Ma, Li-Zhai Pei. Ageing Hardening Mechanism and Corrosion Resistance in the Fe65Cr13Cu3(CoMnMoNiAlTi)19 Medium-Entropy Stainless Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1601-1608. |
[4] | Mingming Zhang, Yipeng Feng, Yahui Wang, Yunsong Niu, Li Xin, Yongfeng Li, Jianxiu Su, Shenglong Zhu, Fuhui Wang. Corrosion Behaviors of Nitride Coatings on Titanium Alloy in NaCl-Induced Hot Corrosion [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1434-1446. |
[5] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[6] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[7] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[8] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. |
[9] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[10] | Haifei Zhou, Zhouhai Qian, Mengcheng Zhou, Xuebing Liu, Yong Li, Xinfang Zhang. Synergistic Balance of Strength and Corrosion Resistance in Al-Mg-Er Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 659-670. |
[11] | Li-Mei Liu, Yu-Xiang Lai, Chun-Hui Liu, Jiang-Hua Chen. Optimized Combinatorial Properties of an AlMgSi(Cu) Alloy Achieved by a Mechanical-Thermal Combinatorial Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 751-758. |
[12] | Jing-Jing Dong, Lin Fan, Hai-Bing Zhang, Li-Kun Xu, Li-Li Xue. Electrochemical Performance of Passive Film Formed on Ti-Al-Nb-Zr Alloy in Simulated Deep Sea Environments [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 595-604. |
[13] | Hao-Yi Niu, Fang-Fang Cao, Kun-Kun Deng, Kai-Bo Nie, Jin-Wen Kang, Hong-Wei Wang. Microstructure and Corrosion Behavior of the As-Extruded Mg-4Zn-2Gd-0.5Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 362-374. |
[14] | Yu-Fen Zhang, Sha-Wei Tang, Tie-Gui Lin, Guang-Yi Liu, Jin Hu. Corrosion Properties of Calcium Stearate-Based Hydrophobic Coatings on Anodized Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1111-1121. |
[15] | S. M. A. Shibli, K. S. Chinchu, M. Ameen Sha. Development of Nano-tetragonal Zirconia-Incorporated Ni-P Coatings for High Corrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 481-494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||