Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (4): 481-494.DOI: 10.1007/s40195-018-0823-4
Special Issue: 2019年复合材料专辑; 2019年腐蚀专辑-2
• Orginal Article • Previous Articles Next Articles
S. M. A. Shibli, K. S. Chinchu1, M. Ameen Sha1
Received:
2018-05-18
Revised:
2018-08-01
Online:
2019-04-10
Published:
2019-04-19
Contact:
M. A. Shibli S.
About author:
Dr. Kun-Kun Deng was born in 1983 and was awarded Ph. D in Harbin University of Technology in 2011. After graduation, he worked in the College of Materials Science and Engineering, Taiyuan University of Technology. At the same time, he continued his research work on the design, fabrication and processing of advanced Mg-based material in. Now, he is the vice chairman of Youth Committee in Magnesium Alloy Branch of Chinese Materials Research Society. He was denoted as young academic pacemaker of Shanxi Province in 2018. He has held two projects of National Nature Science Foundation of China, one project of Specialized Research Fund for the Doctoral Program of Higher Education, one Project of International Cooperation in Shanxi and two projects of Natural Science Foundation of Shanxi. He has published more than 60 articles. The time cited is more than 840 (without selfcitations), and the H-index is 22. In addition, he has published one academic monograph and acquired eight Chinese patents. S. M. A. Shibli, K. S. Chinchu, M. Ameen Sha. Development of Nano-tetragonal Zirconia-Incorporated Ni-P Coatings for High Corrosion Resistance[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 481-494.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 A SAED pattern and B high-resolution TEM image of nano-tetragonal zirconia, C the EDS spectrum of the synthesized nano-tetragonal zirconia, D FESEM image of the nano-tetragonal zirconia (magnification 100,000 ×)
Fig. 3 I XRD patterns of (a) nano-tetragonal zirconia as prepared and (b) nano-tetragonal zirconia after annealing at a temperature of 250 °C for 1 h, II TG-DTG curves of the nano-tetragonal zirconia, III UV-visible absorbance spectrum of (a) nano-tetragonal zirconia (b) nano-tetragonal zirconia from the electroless Ni-P bath, and IV FTIR spectra of (a) nano-tetragonal zirconia and (b) nano-tetragonal zirconia from the electroless Ni-P bath
Sl. no. | Concentration of nano-tetragonal zirconia in the bath (g/L) | Hardness (VHN) | Thickness (μm) | Adhesion | Porosity | Wear resistance |
---|---|---|---|---|---|---|
1 | 0 | 458-463 | 10-11 | Good | porous | Fair |
2 | 1 | 526-530 | 11-12 | Good | Less porous | Good |
3 | 2 | 538-541 | 12-14 | Better | Less porous | Better |
4 | 5 | 544-547 | 14-15 | Better | Less porous | Better |
5 | 10 | 532-536 | 12-13 | Better | Less porous | Better |
Table 1 Comparison of physicochemical characteristics of varying amount of nano-tetragonal zirconia-incorporated Ni-P coatings
Sl. no. | Concentration of nano-tetragonal zirconia in the bath (g/L) | Hardness (VHN) | Thickness (μm) | Adhesion | Porosity | Wear resistance |
---|---|---|---|---|---|---|
1 | 0 | 458-463 | 10-11 | Good | porous | Fair |
2 | 1 | 526-530 | 11-12 | Good | Less porous | Good |
3 | 2 | 538-541 | 12-14 | Better | Less porous | Better |
4 | 5 | 544-547 | 14-15 | Better | Less porous | Better |
5 | 10 | 532-536 | 12-13 | Better | Less porous | Better |
Fig. 4 A XRD patterns of (a) bare Ni-P and (b) Ni-P-nano-tetragonal zirconia coatings, B EDS spectra of bare Ni-P coating, C EDS spectra of Ni-P-nano-tetragonal zirconia coating, D SEM image of bare Ni-P coating, E SEM image of Ni-P-nano-tetragonal zirconia coating
Fig. 5 A Anodic polarization curves of Ni-P-nano-tetragonal zirconia coatings in 3.5% NaCl solution at temperature 30 ± 2 °C [open circle—0 g/L, open triangle—1 g/L, open square—2 g/L, filled circle—5 g/L and filled triangle—10 g/L], B Tafel polarization curves of (a) bare Ni-P and (b) Ni-P-nano-tetragonal zirconia coatings, CSEM image of bare Ni-P after anodic polarization and D SEM image of Ni-P-nano-tetragonal zirconia coating after anodic polarization, E EDS spectra of bare Ni-P coating after anodic polarization and F EDS spectra of Ni-P-nano-tetragonal zirconia coating after anodic polarization
Type of coating | βa (V/dec) | βc (V/dec) | Rp (kΩ/cm2) | Ecorr (V) | icorr (μA/cm2) | Corrosion rate (mm/year) |
---|---|---|---|---|---|---|
Bare Ni-P | 0.3078 | 0.1915 | 7.928 | - 0.379 | 6.467 | 7.518 × 10-2 |
Ni-P-nano-tetragonal zirconia | 0.3828 | 0.1723 | 13.200 | - 0.349 | 3.909 | 4.545 × 10-2 |
Table 2 Comparison of corrosion characteristics of Ni-P coatings with and Ni-P-nano-tetragonal zirconia coating
Type of coating | βa (V/dec) | βc (V/dec) | Rp (kΩ/cm2) | Ecorr (V) | icorr (μA/cm2) | Corrosion rate (mm/year) |
---|---|---|---|---|---|---|
Bare Ni-P | 0.3078 | 0.1915 | 7.928 | - 0.379 | 6.467 | 7.518 × 10-2 |
Ni-P-nano-tetragonal zirconia | 0.3828 | 0.1723 | 13.200 | - 0.349 | 3.909 | 4.545 × 10-2 |
Fig. 6 A Nyquist plots of (a) bare Ni-P coating, (b) Ni-P-nano-tetragonal zirconia coating, B the circuit used to fit EIS data and C Bode plots (a) bare Ni-P coating and (b) Ni-P-nano-tetragonal zirconia coating
Type of coating | CPEdl (μF/cm2) | Rct (kΩ/cm2) |
---|---|---|
Pure Ni-P | 86.2 | 2.461 |
Ni-P-nano-tetragonal zirconia | 11.56 | 16.75 |
Table 3 Electrochemical parameters of electroless Ni-P coatings with and without nano-tetragonal zirconia incorporation in 3.5% NaCl obtained from EIS analysis
Type of coating | CPEdl (μF/cm2) | Rct (kΩ/cm2) |
---|---|---|
Pure Ni-P | 86.2 | 2.461 |
Ni-P-nano-tetragonal zirconia | 11.56 | 16.75 |
|
[1] | S. Bi, B. L. Xiao, Z. H. Ji, B. S. Liu, Z. Y. Liu, Z. Y. Ma. Dispersion and Damage of Carbon Nanotubes in Carbon Nanotube/7055Al Composites During High-Energy Ball Milling Process [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 196-204. |
[2] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[3] | Yuanyuan Liu, Zhongmin Lang, Jinlong Cui, Shengli An. Performance of Nb0.8Zr0.2 Layer-Modified AISI430 Stainless Steel as Bipolar Plates for Direct Formic Acid Fuel Cells [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 77-84. |
[4] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[5] | Xigang Yang, Yun Zhou, Ruihua Zhu, Shengqi Xi, Cheng He, Hongjing Wu, Yuan Gao. A Novel, Amorphous, Non-equiatomic FeCrAlCuNiSi High-Entropy Alloy with Exceptional Corrosion Resistance and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1057-1063. |
[6] | P. F. Zhou, D. H. Xiao, T. C. Yuan. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 937-946. |
[7] | Yu-Ning Zan, Yang-Tao Zhou, Xiao-Nan Li, Guo-Nan Ma, Zhen-Yu Liu, Quan-Zhao Wang, Dong Wang, Bo-Lv Xiao, Zong-Yi Ma. Enhancing High-Temperature Strength and Thermal Stability of Al2O3/Al Composites by High-Temperature Pre-treatment of Ultrafine Al Powders [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 913-921. |
[8] | Juan Liu, Yuze Wu, Lin Wang, Hui Wang, Charlie Kong, Alexander Pesin, Alexander P. Zhilyaev, Hailiang Yu. Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites via Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 871-880. |
[9] | Yue Su, Shun-Cun Luo, Liang Meng, Piao Gao, Ze-Min Wang. Selective Laser Melting of In Situ TiB/Ti6Al4V Composites: Formability, Microstructure Evolution and Mechanical Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 774-788. |
[10] | Tielong Han, Jiajun Li, Naiqin Zhao, Chunnian He. Fabrication of Graphene Nanoplates Modified with Nickel Nanoparticles for Reinforcing Copper Matrix Composites [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 643-648. |
[11] | Li-Mei Liu, Yu-Xiang Lai, Chun-Hui Liu, Jiang-Hua Chen. Optimized Combinatorial Properties of an AlMgSi(Cu) Alloy Achieved by a Mechanical-Thermal Combinatorial Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 751-758. |
[12] | Dong Li, Chaoyu Wang, Yishi Su, Di Zhang, Qiubao Ouyang. Governing the Inclination Angle of Graphite Flakes in the Graphite Flake/Al Composites by Controlling the Al Particle Size via Flake Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 649-658. |
[13] | Haifei Zhou, Zhouhai Qian, Mengcheng Zhou, Xuebing Liu, Yong Li, Xinfang Zhang. Synergistic Balance of Strength and Corrosion Resistance in Al-Mg-Er Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 659-670. |
[14] | Jing-Jing Dong, Lin Fan, Hai-Bing Zhang, Li-Kun Xu, Li-Li Xue. Electrochemical Performance of Passive Film Formed on Ti-Al-Nb-Zr Alloy in Simulated Deep Sea Environments [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 595-604. |
[15] | Hao-Yi Niu, Fang-Fang Cao, Kun-Kun Deng, Kai-Bo Nie, Jin-Wen Kang, Hong-Wei Wang. Microstructure and Corrosion Behavior of the As-Extruded Mg-4Zn-2Gd-0.5Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 362-374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||