Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (2): 227-238.DOI: 10.1007/s40195-020-01141-w
Previous Articles Next Articles
Biquan Xiao1,2, Jiangfeng Song1,2(), Hua Zhao1,2, Aitao Tang1,2, Qiang Liu1,2, Bin Jiang1,2, Shitao Dou3, Fusheng Pan1,2(
)
Received:
2020-06-22
Revised:
2020-07-17
Accepted:
2020-08-18
Online:
2021-02-10
Published:
2021-02-09
Contact:
Jiangfeng Song,Fusheng Pan
Biquan Xiao, Jiangfeng Song, Hua Zhao, Aitao Tang, Qiang Liu, Bin Jiang, Shitao Dou, Fusheng Pan. Optimized Tension for AZ31B Thin Sheets Rolled with On-Line Heating Rolling[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 227-238.
Add to citation manager EndNote|Ris|BibTeX
Sample designation | Forward force (kN) | Forward tension (MPa) | Backward force (kN) | Backward tension (MPa) | Tension difference (MPa) |
---|---|---|---|---|---|
3/6 | 3 | 29.4 | 6 | 49.8 | - 20.4 |
1/1 | 1 | 9.8 | 1 | 8.3 | 1.5 |
3/3 | 3 | 29.4 | 3 | 24.9 | 4.5 |
5/5 | 5 | 49.0 | 5 | 41.5 | 7.5 |
6/3 | 6 | 58.8 | 3 | 24.9 | 33.9 |
Table 1 Applied tension in this study
Sample designation | Forward force (kN) | Forward tension (MPa) | Backward force (kN) | Backward tension (MPa) | Tension difference (MPa) |
---|---|---|---|---|---|
3/6 | 3 | 29.4 | 6 | 49.8 | - 20.4 |
1/1 | 1 | 9.8 | 1 | 8.3 | 1.5 |
3/3 | 3 | 29.4 | 3 | 24.9 | 4.5 |
5/5 | 5 | 49.0 | 5 | 41.5 | 7.5 |
6/3 | 6 | 58.8 | 3 | 24.9 | 33.9 |
Samples | YS (MPa) | UTS (MPa) | FE (%) | |||
---|---|---|---|---|---|---|
0° | 90° | 0° | 90° | 0° | 90° | |
3/6 | 252.6 ± 6.9 | 280.3 ± 6.9 | 286.5 ± 1.4 | 302.3 ± 2.1 | 9.3 ± 0.3 | 12.2 ± 1.5 |
1/1 | 233.1 ± 3.2 | 274.4 ± 2.5 | 274.1 ± 1.9 | 301.5 ± 2.3 | 12.3 ± 0.7 | 12.3 ± 0.9 |
3/3 | 230.3 ± 2.5 | 269.2 ± 3.5 | 269.5 ± 4.1 | 297.1 ± 1.9 | 11.3 ± 1.1 | 13.1 ± 1.2 |
5/5 | 216.2 ± 3.6 | 250.1 ± 3.2 | 264.5 ± 2.1 | 279.8 ± 1.6 | 11.9 ± 1.6 | 12.6 ± 1.5 |
6/3 | 216.9 ± 1.9 | 252.6 ± 2.5 | 263.6 ± 1.6 | 281.4 ± 0.7 | 11.5 ± 2.5 | 13.8 ± 1.8 |
Table 2 Tensile properties at room temperature of AZ31 sheets rolled at various tensions
Samples | YS (MPa) | UTS (MPa) | FE (%) | |||
---|---|---|---|---|---|---|
0° | 90° | 0° | 90° | 0° | 90° | |
3/6 | 252.6 ± 6.9 | 280.3 ± 6.9 | 286.5 ± 1.4 | 302.3 ± 2.1 | 9.3 ± 0.3 | 12.2 ± 1.5 |
1/1 | 233.1 ± 3.2 | 274.4 ± 2.5 | 274.1 ± 1.9 | 301.5 ± 2.3 | 12.3 ± 0.7 | 12.3 ± 0.9 |
3/3 | 230.3 ± 2.5 | 269.2 ± 3.5 | 269.5 ± 4.1 | 297.1 ± 1.9 | 11.3 ± 1.1 | 13.1 ± 1.2 |
5/5 | 216.2 ± 3.6 | 250.1 ± 3.2 | 264.5 ± 2.1 | 279.8 ± 1.6 | 11.9 ± 1.6 | 12.6 ± 1.5 |
6/3 | 216.9 ± 1.9 | 252.6 ± 2.5 | 263.6 ± 1.6 | 281.4 ± 0.7 | 11.5 ± 2.5 | 13.8 ± 1.8 |
Samples | Final thickness (mm) | Pass reduction (%) | Rolling force (kN) | Texture intensity | Recrystallization ratio (%) |
---|---|---|---|---|---|
1/1 | 0.837 | 16.3 | 185 | 11.5 | 9.0 |
3/3 | 0.838 | 16.2 | 180 | 10.1 | 10.8 |
5/5 | 0.817 | 18.3 | 151 | 11.9 | 15.2 |
Table 3 Pass reduction, rolling force, texture intensity and recrystallization ratio
Samples | Final thickness (mm) | Pass reduction (%) | Rolling force (kN) | Texture intensity | Recrystallization ratio (%) |
---|---|---|---|---|---|
1/1 | 0.837 | 16.3 | 185 | 11.5 | 9.0 |
3/3 | 0.838 | 16.2 | 180 | 10.1 | 10.8 |
5/5 | 0.817 | 18.3 | 151 | 11.9 | 15.2 |
Fig. 11 a Kernel average misorientation (KAM) maps divided evenly into 5 areas in the ND; b-d the local misorientation average angle distribution of rolled sheets under different tension: b 1 kN, c 3 kN, d 5 kN; e the average KAM value distribution of the five area (N1-5) from (a)
Fig. 12 Distribution of Schmid factor of basal slip during tensile along 0°and 90° for rolled sheets deformed at various tensile forces: a 1 kN, b 3 kN, c 5 kN
[1] | N. Sezer, Z. Evis, S.M. Kayhan, A. Tahmasebifar, M. Koc, J. Magnes. Alloys 6, 23 (2018) |
[2] |
S.T. Zhang, F.J. Wu, Surf. Interface Anal. 43, 752(2011)
DOI URL |
[3] | K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, X.S. Hu, J. Alloys Compd. 509, 8664(2011) |
[4] | P. Amaravathy, T.S.S. Kumar, J. Magnes. Alloys. 7, 584(2019) |
[5] | B. Li, R. Masse, C.F. Liu, Y. Hu, W.S. Li, G.Q. Zhang, G.Z. Cao, Energy Storage Mater. 22, 96(2019) |
[6] | D. Schloffer, S. Bozorgi, P. Sherstnev, C. Lenardt, B. Gollas, J. Power Sources 367, 138 (2017) |
[7] | K. Kpogan, H. Zahrouni, M. Potier-Ferry, H. Dhia, Int. J. Mater. Form. 10, 389(2017) |
[8] | X.C. Yang, X.L. Ma, J. Moering, H. Zhou, W. Wang, Y.L. Gong, J.M. Tao, Y.T. Zhu, X.K. Zhu, Mater. Sci. Eng. A 645, 280 (2015) |
[9] | L. Chen, F.P. Yuan, P. Jiang, J.J. Xie, X.L. Wu, Mater. Sci. Eng. A 694, 98 (2017) |
[10] | X.C. Wang, Q.A. Yang, X.Z. Du, Z.Y. Jiang, Int. J. Miner. Metall. Mater. 17, 608(2010) |
[11] | J.Y. Jung, Y.T. Im, J. Mater. Process. Technol. 96, 163(1999) |
[12] | J.L. Sun, Y. Peng, H.M. Liu, J. Iron, Steel Res. Int. 17, 11(2010) |
[13] | A. Steinboeck, G. Mühlberger, A. Kugi, IFAC Proc. Vol. 47, 10646(2014) |
[14] | H. Asgari, A.G. Odeshi, J.A. Szpunar, L.J. Zeng, E. Olsson, Mater. Charact. 106, 359(2015) |
[15] | F. Ning, X. Zhou, Q. Le, X. Li, Y. Li, Mater. Today Commun. 24, 101129(2020) |
[16] | B.Q. Xiao, J.F. Song, A.T. Tang, B. Jiang, W.Y. Sun, Q. Liu, H. Zhao, F.S. Pan, J. Mater. Process. Technol. 280(12), 116611(2020) |
[17] | B. Zeng, Dissertation, Chongqing University, 2017. |
[18] | D. Luo, H.Y. Wang, L.G. Zhao, C. Wang, G.J. Liu, Y. Liu, Q.C. Jiang, Mater. Charact. 124, 223(2017) |
[19] | I.B. Ucel, E. Kapan, O. Turkoglu, C.C. Aydiner, Int. J. Plast. 118, 233(2019) |
[20] | J. Koike, R. Ohyama, Acta Mater. 53, 1963 (2005) |
[21] | M.W. Vaughan, W. Nasim, E. Dogan, J.S. Herrington, G. Proust, A.A. Benzerga, I. Karaman, Acta Mater. 168, 448(2019) |
[22] | N.L. Li, G.J. Huang, X.Y. Zhong, Q. Liu, Mater. Des. 50, 382(2013) |
[23] | S.S.S. Kumar, B. Pavithra, V. Singh, P. Ghosal, T. Raghu, Mater. Sci. Eng. A 747, 1 (2019) |
[24] | Z.Y. Xiao, X.Y. Yang, J. Wang, Z.W. Fang, C.F. Guo, D.X. Zhang, Y. Yang, X.K. Zhang, J. Alloys Compd. 712, 268(2017) |
[25] | Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, L. Sun, Mater. Sci. Eng. A 723, 212 (2018) |
[26] | M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010) |
[1] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[2] | Baojie Wang, Daokui Xu, Tianyu Zhao, Liyuan Sheng. Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg-Zn-Y-Nd alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 239-247. |
[3] | Dong-Dong Gu, Jian Peng, Jia-Wen Wang, Zheng-Tao Liu, Fu-Sheng Pan. Effect of Mn Modification on the Corrosion Susceptibility of Mg-Mn Alloys by Magnesium Scrap [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 1-11. |
[4] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[5] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[6] | Jiaqi Hu, Qite Li, Hong Gao. Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 65-76. |
[7] | Zheng-Zheng Yin, Zhao-Qi Zhang, Xiu-Juan Tian, Zhen-Lin Wang, Rong-Chang Zeng. Corrosion Resistance and Durability of Superhydrophobic Coating on AZ31 Mg Alloy via One-Step Electrodeposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 25-38. |
[8] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[9] | Fenghua Wang, Peng Su, Linxin Qin, Shuai Dong, Yunliang Li, Jie Dong. Microstructure and Mechanical Properties of Mg-3Al-Zn Magnesium Alloy Sheet by Hot Shear Spinning [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1226-1234. |
[10] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[11] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. |
[12] | Hui Li, Wan Du, Yi Liu. Molecular Dynamics Study of Tension Process of Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 741-750. |
[13] | Yang Shao, Rong-Chang Zeng, Shuo-Qi Li, Lan-Yue Cui, Yu-Hong Zou, Shao-Kang Guan, Yu-Feng Zheng. Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 615-629. |
[14] | Longlong Zhang, Yatong Zhang, Jinshan Zhang, Rui Zhao, Jiaxin Zhang, Chunxiang Xu. Effect of Alloyed Mo on Mechanical Properties, Biocorrosion and Cytocompatibility of As-Cast Mg-Zn-Y-Mn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 500-513. |
[15] | Yan Dai, Xian-Hua Chen, Tao Yan, Ai-Tao Tang, Di Zhao, Zhu Luo, Chun-Quan Liu, Ren-Ju Cheng, Fu-Sheng Pan. Improved Corrosion Resistance in AZ61 Magnesium Alloys Induced by Impurity Reduction [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||