Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (10): 1751-1764.DOI: 10.1007/s40195-025-01893-3
Yu Duan1, Yufeng Xia1(
), Baihao Zhang1, Wei Jiang2,3, Peitao Guo1, Lu Li1(
)
Received:2025-03-07
Revised:2025-04-08
Accepted:2025-04-14
Online:2025-07-01
Published:2025-07-01
Contact:
Yufeng Xia, Lu Li
Yu Duan, Yufeng Xia, Baihao Zhang, Wei Jiang, Peitao Guo, Lu Li. Extrusion Temperature-Dependent Mechanical and Degradation Behavior in a Cost-Effective and High-Performance Mg-0.6Zr Alloy[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(10): 1751-1764.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Optical micrographs illustrating the as-cast and the longitudinal cross-sectional microstructures of the Mg-0.6Zr alloy extruded at various temperatures: a as-cast, b 200, c 250, and d 320 samples. Backscattered electron (BSE) images and corresponding EDS point analyses of Zr-rich particles in the e 200, f 250, and g 320 extruded samples. h Quantitative analysis of the number density and interparticle spacing of Zr-rich particles
Fig. 2 a-c EBSD orientation maps, corresponding IPFs along the ED, and misorientation angle distributions of the 200, 250, and 320 samples, respectively; d-f KAM maps corresponding to a-c
| Test alloys | TYS (MPa) | UTS (MPa) | EL (%) | Hc |
|---|---|---|---|---|
| 200 | 244 ± 3.4 | 288 ± 4.1 | 5.4 ± 1.2 | 0.19 |
| 250 | 185 ± 2.8 | 240 ± 2.6 | 12.9 ± 2.1 | 0.38 |
| 320 | 162 ± 1.6 | 211 ± 2.4 | 13.6 ± 1.8 | 0.42 |
Table 1 Mechanical properties of the Mg-0.6Zr extrusion alloys
| Test alloys | TYS (MPa) | UTS (MPa) | EL (%) | Hc |
|---|---|---|---|---|
| 200 | 244 ± 3.4 | 288 ± 4.1 | 5.4 ± 1.2 | 0.19 |
| 250 | 185 ± 2.8 | 240 ± 2.6 | 12.9 ± 2.1 | 0.38 |
| 320 | 162 ± 1.6 | 211 ± 2.4 | 13.6 ± 1.8 | 0.42 |
Fig. 4 Comparison of strength increment per unit weight and ductility of the alloy studied in this work with those of other as-extruded binary Mg alloys reported in literature [11,12,13,14,15,16]
Fig. 5 Electrochemical performance of different samples in SBF: a potentiodynamic polarization curves, b Nyquist plots, c Bode modulus plots, and d Bode phase angle plots
| Sample | Ecorr(VSCE) | icorr(μA/cm2) | Pi(mm/y) |
|---|---|---|---|
| 200 | −1.699 | 590 | 13.48 |
| 250 | −1.782 | 137 | 3.05 |
| 320 | −1.713 | 157 | 3.59 |
Table 2 Fitted electrochemical parameters obtained from the polarization curves
| Sample | Ecorr(VSCE) | icorr(μA/cm2) | Pi(mm/y) |
|---|---|---|---|
| 200 | −1.699 | 590 | 13.48 |
| 250 | −1.782 | 137 | 3.05 |
| 320 | −1.713 | 157 | 3.59 |
| Sample | Rs (Ω cm2) | Rct (Ω cm2) | Cdl | Rf (Ω cm2) | Cf | L (H cm2) | RL (Ω cm2) | RP (Ω cm2) | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Y0,dl (μF cm−2 sn−1) | ndl | Y0,dl (μF cm−2 sn−1) | nf | |||||||
| 200 | 22.6 | 135.1 | 41.7 | 0.85 | 102.3 | 2718.2 | 0.78 | 3251 | 3.5 | 105.7 |
| 250 | 21.2 | 185.0 | 27.2 | 0.95 | 402.5 | 2479.8 | 0.46 | 4363 | 232 | 505.4 |
| 320 | 20.2 | 174.8 | 46.1 | 0.85 | 170.0 | 2842.6 | 0.63 | 3174 | 34.2 | 198.6 |
Table 3 EEC fitting results for the Mg-0.6Zr extrusion alloys
| Sample | Rs (Ω cm2) | Rct (Ω cm2) | Cdl | Rf (Ω cm2) | Cf | L (H cm2) | RL (Ω cm2) | RP (Ω cm2) | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Y0,dl (μF cm−2 sn−1) | ndl | Y0,dl (μF cm−2 sn−1) | nf | |||||||
| 200 | 22.6 | 135.1 | 41.7 | 0.85 | 102.3 | 2718.2 | 0.78 | 3251 | 3.5 | 105.7 |
| 250 | 21.2 | 185.0 | 27.2 | 0.95 | 402.5 | 2479.8 | 0.46 | 4363 | 232 | 505.4 |
| 320 | 20.2 | 174.8 | 46.1 | 0.85 | 170.0 | 2842.6 | 0.63 | 3174 | 34.2 | 198.6 |
Fig. 6 Corrosion morphologies of the a, d, g 200, b, e, h 250, and c, f, i 320 samples after 1-day immersion in SBF: a-c with corrosion products, d-f after removal of corrosion products, and g-i LSCM images post removal
Fig. 7 Grain orientation maps, corresponding ED IPFs, and GND density maps of the 250 and 320 samples at 0% and 10% strain: a-d 250 sample, e-h 320 sample
Fig. 8 Slip trace identification in the 250 and 320 samples at 10% strain: a 250 sample, b 320 sample; c, c1 basal slip, d, d1 prismatic slip, e, e1 pyramidal I slip, and f, f1 pyramidal II slip; g statistical distribution of activated slip systems in both samples
Fig. 9 VPSC simulation results for the a, b 250 and c, d 320 samples: a, c experimental and simulated true stress-strain curves, b, d relative activity of different deformation modes
Fig. 11 Correlation between alloy cost and performance indicators for this study and other binary Mg extrusion alloys [11,12,13,14,15,16]: a strength increment per unit weight versus price, b ductility increment per unit weight versus price, and c corrosion rate versus price
| [1] | H.C. Pan, G.W. Qin, Y.M. Huang, Y.P. Ren, X.C. Sha, X.D. Han, Z.Q. Liu, C.F. Li, X.L. Wu, H.W. Chen, C. He, L.J. Chai, Y.Z. Wang, J.F. Nie, Acta Mater. 149, 350 (2018) |
| [2] | C.J. Yan, B. Guan, Y.C. Xin, L.Y. Zhao, G.J. Huang, R. Hong, X.B. Chen, P.K. Chu, Acta Metall. Sin.-Engl. Lett. 36, 439 (2023) |
| [3] | Y. Liu, J.B. Wen, H. Li, J.G. He, J. Alloys Compd. 891, 161964 (2022) |
| [4] | S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, Z.Q. Zhang, Corros. Sci. 166, 108419 (2020) |
| [5] | M. Lotfpour, C. Dehghanian, M. Emamy, A. Bahmani, M. Malekan, A. Saadati, M. Taghizadeh, M. Shokouhimehr, J. Magnes. Alloy. 9, 2078 (2021) |
| [6] | M. Ali, M.A. Hussein, N. Al-Aqeeli, J. Alloys Compd. 792, 1162 (2019) |
| [7] | Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31, 2895 (2000) |
| [8] | F. Kabirian, A.S. Khan, T. Gnäupel-Herlod, Int. J. Plast. 68, 1 (2015) |
| [9] | Z. Chen, H.Z. Li, X.P. Liang, M.C. Zhao, K. Zhang, A. Atrens, J. Magnes. Alloy. 11, 4282 (2023) |
| [10] | A.C. Morton, D. Crossman, J. Gunn, Pathol. Biol. 52, 196 (2004) |
| [11] | J.N. Liu, D. Bian, Y.F. Zheng, X. Chu, Y.L. Lin, M. Wang, Z.F. Lin, M. Li, Y. Zhang, S.K. Guan, Acta Biomater. 102, 508 (2020) |
| [12] | Z.J. Li, X.N. Gu, S.Q. Lou, Y.F. Zheng, Biomaterials 29,1329 (2008) |
| [13] | Q.M. Peng, X.J. Li, N. Ma, R.P. Liu, H.J. Zhang, J. Mech. Behav. Biomed. Mater. 10, 128 (2012) |
| [14] | C. Liu, P. Wan, L.L. Tan, K.H. Wang, K. Yang, J. Orthop. Transl. 2, 139 (2014) |
| [15] | C.Y. Zhao, F.S. Pan, S. Zhao, H.C. Pan, K. Song, A.T. Tang, Mater. Des. 70, 60 (2015) |
| [16] | L. Elen, Y. Turen, H. Ahlatci, Y. Sun, M. Unal, Arch. Metall. Mater. 67, 889 (2021) |
| [17] | J.S. Xie, J.H. Zhang, Z. Zhang, Q. Yang, K. Guan, Y.Y. He, R. Wang, H. Zhang, X. Qiu, R.Z. Wu, Corros. Sci. 198, 110163 (2022) |
| [18] | J. Wang, X.J. Wang, Z.N. Chen, H.J. Kang, T.M. Wang, E.Y. Guo, Acta Metall. Sin.-Engl. Lett. 38, 353 (2025) |
| [19] | Y.H. Liu, W.L. Cheng, Y. Zhang, X.F. Niu, H.X. Wang, L.F. Wang, J. Alloys Compd. 815, 152414 (2020) |
| [20] | C. Liu, X. Chen, Y. Wu, Y. Hu, W. Zhang, Y. Zhang, J. Bai, F. Pan, Acta Metall. Sin.-Engl. Lett. 36, 1281 (2023) |
| [21] | W.C. Zhang, Z.X. Li, B. Hu, F.J. Yao, J.X. Han, X.Y. Wang, Z.F. Jiang, X.Q. Zeng, D.J. Li, Materialia 34,102073 (2024) |
| [22] | C.H. Cáceres, P. Lukáč, Phil. Mag. 88, 977 (2008) |
| [23] | N. Hansen, Scr. Mater. 51, 801 (2004) |
| [24] | W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, B.S. You, J. Magnes. Alloy. 2, 299 (2014) |
| [25] | W.Z. Chen, J.F. Ma, C. Cui, W.C. Zhang, W.K. Wang, X.T. Liu, J.L. Yang, G.R. Cui, Mater. Sci. Eng. A 831, 142185 (2022) |
| [26] | H.B. Yang, Y.F. Chai, B. Jiang, C. He, J.J. He, Q.S. Yang, M. Yuan, Int. J. Miner. Metall. Mater. 29, 1343 (2022) |
| [27] | Z.R. Zeng, Y.M. Zhu, J.F. Nie, S.W. Xu, C.H.J. Davies, N. Birbilis, Metall. Mater. Trans. A 50, 4344 (2019) |
| [28] | F.L. Wang, J.J. Bhattacharyya, S.R. Agnew, Mater. Sci. Eng. A 666, 114 (2016) |
| [29] | K.B. Nie, Z.H. Zhu, P. Munroe, K.K. Deng, J.G. Han, Acta Metall. Sin.-Engl. Lett. 33, 922 (2020) |
| [30] | Q. Zhou, Y.F. Xia, Y. Duan, B.H. Zhang, Y.Q. Ye, P.T. Guo, L. Li, Acta Metall. Sin.-Engl. Lett.(2025). https://doi.org/10.1007/s40195-025-01835-z |
| [31] | H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin, W.J. Ding, Int. J. Plast. 84, 255 (2016) |
| [32] |
K.B. Nie, Z.H. Zhu, K.K. Deng, J.G. Han, J. Mater. Res. Technol. 9, 5264 (2020)
DOI |
| [33] | Q.H. Wang, H.W. Zhai, L.T. Liu, H.B. Xia, B. Jiang, J. Zhao, D.L. Chen, F.S. Pan, J. Magnes. Alloy. 10, 2588 (2022) |
| [34] | Z. Jun, J. Bin, Y. Yuan, Q.H. Wang, M. Yuan, A.T. Tang, G.S. Huang, D.F. Zhang, P. Fusheng, J. Mater. Sci. Technol. 95, 20 (2021) |
| [35] | D.S. Gandel, M.A. Easton, M.A. Gibson, T. Abbott, N. Birbilis, Corros. Sci. 81, 27 (2014) |
| [1] | Yuanyuan Feng, Jianchao Pang, Xiaoyuan Teng, Chenglu Zou, Jingjing Liang, Yuping Zhu, Shouxin Li, Jinguo Li, Zhefeng Zhang. Quasi-in-situ EBSD Study on the Microstructure and Tensile Properties of Selective Laser Melted Inconel 718 Alloy Processed by Different Heat Treatments [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1499-1512. |
| [2] | F. S. Li, L. H. Wu, Y. Kan, H. B. Zhao, D. R. Ni, P. Xue, B. L. Xiao, Z. Y. Ma. Microstructure Evolution and Fracture Mechanisms in Electron Beam Welded Joint of Ti-6Al-4V ELI Alloy Ultra-thick Plates [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1317-1330. |
| [3] | Haoyu Cheng, Chenyang Hou, Jianlei Zhang, Xiaodong Mao, Yuanxiang Zhang, Yanyun Zhao, Chulun Shen, Changjiang Song. An Innovative Large-Scale Preparation Method for ODS Steel: Zone Melting with Built-In Precursor Powder [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1397-1409. |
| [4] | Haoran Pang, Liwei Lu, Gongji Yang, Xiaojun Wang, Wen Wang, Hua Zhang, Yujuan Wu. Amelioration of Mechanical Properties of Rolled Mg-4.5Al-2.5Zn Alloy by Cryogenic Cycling Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1436-1452. |
| [5] | Qi Zhou, Yufeng Xia, Yu Duan, Baihao Zhang, Yuqiu Ye, Peitao Guo, Lu Li. Microstructure and Mechanical Properties of Yb-Containing AZ80 Cast Alloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1095-1108. |
| [6] | Mengjun Chen, Tingping Hou, Shi Cheng, Feng Hu, Tao Yu, Xianming Pan, Yuanyuan Li, Kaiming Wu. A Comprehensive Exploration of the Relationship between Microstructure Optimization and Strength Enhancement in Low-Density 5Al-5Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1219-1236. |
| [7] | Yunhu Ding, Yingpeng Li, Hongfang Liu, Wenhao Wang, Yijun Wei, Haitao Duan, Wen Zhan. Corrosion Evolution Behavior of Ti/Zr/Oligomeric Epoxy Silane Composite Chemical Conversion Coatings on Multi-metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 889-903. |
| [8] | Chenzhi Xing, Ming-Hsien Lee, Gongwang Cao, Yuwei Liu, Quanzhong Guo, Zhenyao Wang, Chuan Wang. Discoloration Process of Minted Copper-Nickel Alloys in Chloride Ion-Containing Environments: Experimental and DFT Research [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 925-945. |
| [9] | Wei Pan, Bin Xu, Chong Li. Effects of Groove Shape on Microstructure and Mechanical Responses of Laser-Directed Energy Deposition-Repaired GH4099 Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1003-1011. |
| [10] | Xiang Fei, Naicheng Sheng, Zhaokuang Chu, Han Wang, Shijie Sun, Yuping Zhu, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Design Strategy for Synergistic Strengthening of W and Al in High-W Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 1057-1068. |
| [11] | Yao Zhang, Hongtao Wang, Zhongtao Lu, Zifeng Li, Pengfei Wen, Xiaobin Feng, Guodong Li, Bo Duan, Pengcheng Zhai. Effect of Ag Vacancies on the Mechanical Properties of Ag2S Thermoelectric Semiconductor [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 869-875. |
| [12] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
| [13] | Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626. |
| [14] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
| [15] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
