Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (2): 259-275.DOI: 10.1007/s40195-024-01788-9
Previous Articles Next Articles
Yihong Liu1, Zhuo Song1, Muxi Li1, Kangan Wang1, Zhiping Xiong2, Hua Hou1,3, Yuhong Zhao1,4,5()
Received:
2024-05-11
Revised:
2024-07-27
Accepted:
2024-08-11
Online:
2025-02-10
Published:
2024-11-02
Contact:
Yuhong Zhao, Yihong Liu, Zhuo Song, Muxi Li, Kangan Wang, Zhiping Xiong, Hua Hou, Yuhong Zhao. EBSD and Phase-Field Crystal Simulation Revealed the Inhibition of Al3Ti on Crack Extention in TC4-2024Al Laminated Composites[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 259-275.
Add to citation manager EndNote|Ris|BibTeX
Materials | Al | Ti | Cu | V | Mg | Fe | Si | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|
2024 Al | Bal. | 0.03 | 4.6 | - | 1.46 | 0.15 | 0.06 | 0.6 | 0.05 |
TC4 | 6.5 | Bal. | - | 4.2 | - | 0.15 | - | - | - |
Table 1 Chemical composition of the raw materials (wt%)
Materials | Al | Ti | Cu | V | Mg | Fe | Si | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|
2024 Al | Bal. | 0.03 | 4.6 | - | 1.46 | 0.15 | 0.06 | 0.6 | 0.05 |
TC4 | 6.5 | Bal. | - | 4.2 | - | 0.15 | - | - | - |
Fig. 3 a SEM micrographs of the interface, b EDS point scans of point A, c EDS point scans of point B, d EDS point scans of point C, e EDS point scans of point D, f XRD pattern of the growth layer annealed for 2 h and 32 h
Bonding temperature (°C) | |||
---|---|---|---|
540 | − 26.01 × 103 | − 28.38 × 103 | − 34.75 × 103 |
620 | − 25.47 × 103 | − 27.03 × 103 | − 33.92 × 103 |
Table 2 Free energy of formation of AlTi3, AlTi, Al3Ti calculated at the bonding temperatures
Bonding temperature (°C) | |||
---|---|---|---|
540 | − 26.01 × 103 | − 28.38 × 103 | − 34.75 × 103 |
620 | − 25.47 × 103 | − 27.03 × 103 | − 33.92 × 103 |
Fig. 5 SEM micrographs of the 2024 Al/TC4 laminated composites: a annealing 0 h, b annealing 2 h, c annealing 8 h, d annealing 16 h, e annealing 24 h, f annealing 32 h
Fig. 6 EDS line scans of the growth layers of 2024 Al/TC4 laminated composites: a annealed 0 h, b annealed 2 h, c annealed 8 h, d annealed 16 h, e annealed 24 h, f annealed 32 h
Fig. 7 a Relationship between Al3Ti layer thickness and annealing time, b SEM image of the interface of annealed 8 h, c SEM image of the interface of annealed 16 h
Fig. 8 Phase distribution diagram: a annealed 2 h, b Al side at annealed 32 h, c Ti side at annealed 32 h; Grain boundary distribution diagram d Annealed 2 h, e Al side at annealed 32 h, f Ti side at annealed 32 h; Histograms of the grain size distribution and cumulative frequency curves of Al3Ti grains: g annealed 2 h, h Al side at annealed 32 h, i Ti side at annealed 32 h
Fig. 10 Crack morphology of 2024 Al/TC4 laminated composites after three-point bending test: a annealed 0 h, b annealed 2 h, c annealed 8 h, d annealed 16 h, e annealed 24 h, f annealed 32 h
Fig. 13 a KAM maps of 2024 Al/TC4 laminated composites after annealing for 2 h, b KAM statistics of 2024 Al layer, c KAM statistics of Al3Ti layer, d KAM statistics of TC4 layer
Fig. 14 a IPF maps of 2024 Al/TC4 laminated composites along the bending direction, b pole figure of the 2024 Al layer after bending, c pole figure of the TC4 layer after bending, d IPF magnified image of the 2024 Al layer after bending in a, e IPF magnified image of the TC4 layer after bending in a
Fig. 15 Schematic diagram of crack extension in 2024 Al/TC4 laminated composites: a-c the early stage of loading, d-f the middle stage of loading, g-i the end stage of loading
Fig. 16 a Morphology at the interface after annealing for 8 h, b local magnification of the diffusion layer in a, c local magnification of the diffusion layer in a, d mopography at the interface after annealing for 16 h
Fig. 17 Crack evolution under different dislocation conditions: a1-c1 an interface without dislocations; a2-c2 an interface with dislocations. (Note: The white dotted line represents the interface between the growth and diffusion layers, the red rhombic structure indicates dislocations on large-angle grain boundaries, the green atomic region is the initial crack, the red atomic position is the dislocation, the red acute-angle structure indicates that the crack extension tip is acute, the yellow arc structure indicates crack passivation, and the yellow arrow indicates the direction of crack extension.)
[1] | B. Diepold, C. Schunk, F. Kümmel, T. Fey, A. Prakash, H.W. Höppel, M. Göken, Adv. Eng. Mater. 24, 12 (2022) |
[2] | W. Liu, Y.H. Zhao, Y.T. Zhang, C. Shuai, L.W. Chen, Z.Q. Huang, H. Hou, Int. J. Plast. 164, 20 (2023) |
[3] | T.Z. Xin, Y.H. Zhao, R. Mahjoub, J.X. Jiang, A. Yadav, K. Nomoto, R.M. Niu, S. Tang, F. Ji, Z. Quadir, D. Miskovic, J. Daniels, W.Q. Xu, X.Z. Liao, L.Q. Chen, K. Hagihara, X.Y. Li, S. Ringer, M. Ferry, Sci. Adv. 7, 9 (2021) |
[4] | S. Lyu, Y. Sun, L. Ren, W. Xiao, C. Ma, Intermetallics 90, 16 (2017) |
[5] | Y. Han, Q. Que, R. Cheng, C. Lin, W. Han, E. Wang, J. Zhu, H. Yan, Met. Mater. Int. 27, 4035 (2021) |
[6] | D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, P. Zieba, Mater. Des. 91, 80 (2016) |
[7] | J.F. Lu, F.L. Zhang, Y.M. Zhou, H.P. Huang, C.Y. Wang, S.H. Wu, H.T. Lin, Sci. Sinter. 49, 149 (2017) |
[8] | P.T. Gong, P. Lin, L.J. Meng, Z.S. Huang, X.Q. Cao, T. Wang, Rare Metal. Mat. Eng. 51, 4258 (2022) |
[9] | Q. Lu, X. Chen, J.L. Fan, Ceram. Int. 45, 15807 (2019) |
[10] | X.H. Li, X. Wen, H.H. Zhao, Z.Q. Ma, L.M. Yu, C. Li, C.X. Liu, Q.Y. Guo, Y.C. Liu, J. Alloys Compd. 779, 175 (2019) |
[11] | J.C. Lin, M. Huang, W.Q. Yang, L.L. Xing, Sci. Rep. 8, 11 (2018) |
[12] | M. Chen, X.Q. Wang, X. Hou, J. Qiu, E.R. Zhang, J. Hu, Surf. Coat. Technol. 465, 12 (2023) |
[13] | M. Huang, C. Xu, G. Fan, E. Maawad, W. Gan, L. Geng, F. Lin, G. Tang, H. Wu, Y. Du, D. Li, K. Miao, T. Zhang, X. Yang, Y. Xia, G. Cao, H. Kang, T. Wang, T. Xiao, H. Xie, Acta Mater. 153, 235 (2018) |
[14] | Y.H. Zhao, npj Comput. Mater. 9, 25 (2023) |
[15] | J.G. Luo, V.L. Acoff, Mater. Sci. Eng. A 379, 164 (2004) |
[16] | J.Y. Zhang, Y.H. Wang, Z. Lü, Q.A. Chen, Y.Y. Chen, H.Z. Li, Trans. Nonferrous Met. Soc. China 32, 524 (2022) |
[17] | N. Thiyaneshwaran, K. Sivaprasad, B. Ravisankar, Mater. Charact. 174, 9 (2021) |
[18] | J.B. Wu, L.G. Meng, D. Jing, Z.X. Sun, B.W. Zhou, X.G. Zhang, Mater. Sci. Eng. A 833, 8 (2022) |
[19] | R.D. Price, F. Jiang, R.M. Kulin, K.S. Vecchio, Mater. Sci. Eng. A 528, 3134 (2011) |
[20] | Z. Yazdani, M.R. Toroghinejad, H. Edris, A.H.W. Ngan, J. Alloys Compd. 747, 217 (2018) |
[21] | J.C. Pang, G.H. Fan, X.P. Cui, A.B. Li, L. Geng, Z.Z. Zheng, Q.W. Wang, Mater. Sci. Eng. A 582, 294 (2013) |
[22] | F.C. Jiang, X. Li, Z.Q. Wang, C.H. Guo, J.D. Wang, J. Alloys Compd. 843, 11 (2020) |
[23] | Y.H. Zhao, H. Xing, L.J. Zhang, H.B. Huang, D.K. Sun, X.L. Dong, Y.X. Shen, J.C. Wang, Acta Metall. Sin. -Engl. Lett. 36, 1749 (2023) |
[24] | Y.H. Zhao, T.Z. Xin, S. Tang, H.F. Wang, X.D. Fang, H. Hou, MRS Bull. 49, 613 (2024) |
[25] | Y.H. Zhao, MGE Adv. 2,e44 (2024) |
[26] | K.R. Elder, M. Grant, Phys. Rev. E 70, 051605 (2004) |
[27] | W. Sun, H.Y. Fan, F.H. You, F.T. Kong, X.P. Wang, Y.Y. Chen, Mater. Sci. Eng. A 782, 11 (2020) |
[28] | T.T. Ai, Q.F. Niu, Z.F. Deng, W.H. Li, H.F. Dong, R. Jing, X.Y. Zou, Intermetallics 121, 10 (2020) |
[29] | F. Foadian, M. Soltanieh, M. Adeli, M. Etminanbakhsh, Metall. Mater. Trans. B 47, 2931 (2016) |
[30] | J.B. Zhang, H.F. Wang, W.W. Kuang, Y.C. Zhang, S. Li, Y.H. Zhao, D.M. Herlach, Acta Mater. 148, 86 (2018) |
[31] | G.Q. Chen, W.S. Yang, K. Ma, M. Hussain, L.T. Jiang, G.H. Wu, Trans. Nonferrous Met. Soc. China 21, S 262 (2011) |
[32] | X. Zhou, Y.M. Gao, Y.R. Wang, P. Xiao, J. Mater. Sci. 58, 7930 (2023) |
[33] | K.S. Vecchio, F.C. Jiang, Mater. Sci. Eng. A 649, 407 (2016) |
[34] | H. Wang, R.C. Reed, J.C. Gebelin, N. Warnken, Calphad 39, 21 (2012) |
[35] | J.C. Schuster, M. Palm, J. Phase Equilib. Diffus. 27, 255 (2006) |
[36] | L.M. Peng, J.H. Wang, H. Li, J.H. Zhao, L.H. He, Scr. Mater. 52, 243 (2005) |
[37] | W.W. Kuang, H.F. Wang, X. Li, J.B. Zhang, Q. Zhou, Y.H. Zhao, Acta Mater. 159, 16 (2018) |
[38] | M. Yuan, Z. Wang, F. Han, Chin. J. Aeronaut. 35, 137 (2022) |
[39] | M.N. Yuan, Y.H. Yao, F.Z. Han, Z.J. Wang, Adv. Compos. Lett. 29, 5 (2020) |
[40] | D. Li, B. Wang, L. Luo, X. Li, Y. Xu, B. Li, D. Hawezy, L. Wang, Y. Su, J. Guo, H. Fu, J. Mater. Sci. Technol. 109, 228 (2022) |
[41] | Y. Wang, K.S. Vecchio, Mater. Sci. Eng. A 649, 325 (2016) |
[42] | L. Xu, Y.Y. Cui, Y.L. Hao, R. Yang, Mater. Sci. Eng. A 435, 638 (2006) |
[43] | W. Yao, A.P. Wu, G.S. Zou, H.L. Ren, Mater. Sci. Eng. A 480, 456 (2008) |
[44] | Z.Y. Wei, M.N. Yuan, X.Q. Shen, F.Z. Han, Y.H. Yao, L. Xin, L.B. Yao, Mater. Charact. 165, 9 (2020) |
[45] | P. Wang, Z. Chen, H. Huang, J. Lin, B. Li, Q. Liu, Chin. J. Aeronaut. 34, 192 (2021) |
[46] | T. Mo, H. Xiao, B. Lin, Acta Metall. Sin. -Engl. Lett. 35, 1946 (2022) |
[47] |
N. Thiyaneshwaran, C.P. Selvan, A. Lakshmikanthan, K. Sivaprasad, B. Ravisankar, J. Mater. Res. Technol. 14, 1126 (2021)
DOI |
[48] | A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Acta Mater. 51, 2933 (2003) |
[49] | G.B. Sinclair, G. Meda, B.S. Smallwood, J. Appl. Mech. Trans. ASME 78, 8 (2011) |
[50] | N. Zhao, M. Li, H. Gong, H. Bal, Sci. Adv. 6, 31 (2020) |
[51] | Q. Zhang, T. Li, Y. Han, W. Zheng, X. Li, J. Wu, Acta Metall. Sin. -Engl. Lett. 37, 353 (2024) |
[52] | H.R. Lin, Y.Z. Tian, S.J. Sun, Z.F. Zhang, Acta Metall. Sin. -Engl. Lett. 34, 7 (2021) |
[53] | Y. Feng, W.H. Chen, Z. Xu, W.J. He, B. Jiang, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 37, 2 (2024) |
[54] | Y. Tang, Y. Wu, Y. Zhang, Y. Dai, Q. Dong, Y. Han, G. Zhu, J. Zhang, Y. Fu, B. Sun, Acta Mater. 212, 116861 (2021) |
[55] | M.X. Li, H.Q. Li, Y.H. Liu, K.G. Wang, W. Liu, H. Hou, Y.H. Zhao, Mater. Sci. Eng. A 884, 145562 (2023) |
[56] | J. Liu, Y. Wu, L. Wang, Acta Metall. Sin. -Engl. Lett. 33, 871 (2020) |
[57] | C. Shuai, W. Liu, H.Q. Li, K.L. Wang, Y.T. Zhang, T.Z. Xie, L.W. Chen, H. Hou, Y.H. Zhao, Int. J. Plast. 170, 21 (2023) |
[58] | W. Sun, F.H. You, F.T. Kong, X.P. Wang, Y.Y. Chen, J. Alloys Compd. 820, 11 (2020) |
[59] | T. Mo, Z. Chen, D. Zhou, G. Lu, Y. Huang, Q. Liu, J. Mater. Sci. Technol. 99, 28 (2022) |
[1] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
[2] | F.Q.Tian. STUDY ON DYNAMIC J-INTEGRAL OF MECHANICAL HETEROGENEOUS WELDED JOINT [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(6): 934-939 . |
[3] | H. Y. Jing; L. X. Huo; Y. F. Zhang and F. Minami( 1) College of Material Science, Tianjin University, Tianjin 300072,China 2) Osaka University, Japan). PROBABILISTIC MODELING OF BRITTLE FRACTURE WITH PRIOR DUCTILE CRACK EXTENSION [J]. Acta Metallurgica Sinica (English Letters), 2000, 13(1): 98-102. |
[4] | X.G.Guo1) , H.R.Yang1)and T.Wu2) 1) Shenyang University ,Shenyang 110044 ,China. 2) Liaoning Jin sheng Construction Company ,Shenyang 110044 ,China.. THE DETERMINATION OF THE RESIDUAL STRESS DURING THE FATIGUE CRACK EXTENDSION [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(4): 725-727. |
[5] | YANG Yanqing LIU Donghui KANG Mokuang Northwestern Polytechnical University,Xi'an,ChinaSUN Yuan Beijing Centre of Physical and Chemical Analysis,Beijing,China. HIGH-TEMPERATURE TEM IN SITU STUDY OF GROWTH KINETICS OF BAINITE IN β BRASS [J]. Acta Metallurgica Sinica (English Letters), 1992, 5(5): 309-313. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||