Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (12): 2068-2082.DOI: 10.1007/s40195-024-01778-x
Previous Articles Next Articles
Zhihao Zhu1, Cenyang Wang1, Tianyu Liu2, Shuang Zhang3(), Chuang Dong1,3
Received:
2024-04-10
Revised:
2024-07-11
Accepted:
2024-07-29
Online:
2024-12-10
Published:
2024-10-12
Contact:
Shuang Zhang, Zhihao Zhu, Cenyang Wang, Tianyu Liu, Shuang Zhang, Chuang Dong. Design of Ultra-Strong As-Cast Titanium Alloy at 600 ℃ by Using Cluster Formula[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2068-2082.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 (Ti, Zr)-Al-(Mo, Nb, Ta, W, Sn, Si, etc.) pseudo-ternary composition diagram showing the positions of the designed Ti5666 (red open squares, arrowed), Ti-6Al-4V, Ti65, IMI834, 7715D, and Ti750 high-temperature Ti alloys, as well as related 16-atoms α-Ti and 18-atoms β-Ti formulas
Material | Cluster formulas (at.%) | Compositions (wt%) | [Mo]eq a (wt%) | [Al]eqb (wt%) |
---|---|---|---|---|
Ti5666 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti12Zr2](Mo0.125Nb0.125Ta0.5W0.25Sn1.5Si0.5)}5 | Ti-5.4Al-6.4Zr-6.2Sn-0.4Mo-1.6W-0.4Nb-3.2Ta-0.5Si | 2.0 | 8.6 |
Ti-6Al-4V | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti14](V2Ti1)}5 | Ti-6Al-4V | 2.7 | 6.0 |
Ti65 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13.03Zr0.97](Mo0.08Nb0.1Ta0.32W0.14Sn0.96Si0.4Ti1)}5 | Ti-5.9Al-4Sn-3.5Zr-0.3Mo-0.3Nb-2.0Ta-0.4Si-1.0W-0.05C | 1.3 | 7.8 |
BT36 | α-{[Al-Ti12](AlTi2)}15 + β-{[Al-Ti11.6Zr2.4](Mo0.3Sn0.9Si0.3W1.5)}2 | Ti-6.2Al-2Sn-3.6Zr-0.7Mo-0.15Si-5W | 3.2 | 7.8 |
IMI834 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13.03Zr0.97](Mo0.18Nb0.24Sn1.12Si0.46Ti1)}5 | Ti-5.8Al-4Sn-3.5Zr-0.5Mo-0.7Nb-0.4Si-0.06C | 0.7 | 7.7 |
Ti1100 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13Zr1](Mo0.1Sn0.55Si0.35Ti2)}5 | Ti-6.0Al-2.7Sn-4Zr-0.4Mo-0.4Si | 0.4 | 7.6 |
TA15 | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti13.2Zr0.8](Mo0.35V0.65Ti2)}3 | Ti-6.5Al-1V-1Mo-2Zr | 1.7 | 6.8 |
BT3-1 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti14](Mo0.62Cr0.92Fe0.21Si0.25Ti1)}6 | Ti-6Al-2.5Mo-2Cr-0.5Fe-0.3Si | 7.1 | 6.0 |
Ti-811 | α-{[Al-Ti12](AlTi2)}11 + β-{[Al-Ti14](Al1.2V1.2Mo0.6)}2 | Ti-8Al-1Mo-1V | 1.7 | 8.0 |
Ti600 | α-{[Al1-Ti12](Al1Ti2)}11 + β-{[Al1-Ti13.17Zr0.83](Mo0.09Si0.36Y0.02Sn0.53Ti2)}6 | Ti-6.0Al-2.8Sn-4.0Zr-0.4Mo-0.45Si-0.1Y | 0.4 | 7.6 |
Ti-6242S | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti13Zr1](Mo0.51Sn0.42Si0.07Ti2)}3 | Ti-6Al-2Sn-4Zr-2Mo-0.08Si | 2.0 | 7.3 |
TA29 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13Zr1](Ta0.26Nb0.24Sn1.06Si0.44Ti1)}5 | Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si-0.06C | 0.5 | 7.8 |
TA33 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13Zr1](Mo0.22Nb0.16Ta0.18Sn1.02Si0.42Ti1)}5 | Ti-5.8Al-4Sn-3.5Zr-0.7Mo-0.5Nb-1.1Ta-0.4Si-0.06C | 1.1 | 7.7 |
TA35 | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti12.4Zr1.6](Mo0.34Nb0.68Sn0.53Si0.45Ti1)}3 | Ti-6Al-2Sn-4Zr-1Mo-2Nb-0.4Si | 1.6 | 7.3 |
IMI685 | α-{[Al-Ti12](AlTi2)}13 + β-{[Al-Ti14](Mo0.16Sn1.52Si0.32Ti1)}4 | Ti-6Al-5Sn-0.4Mo-0.25Si | 0.4 | 7.7 |
BT8 | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti14] (Mo1.5Si0.5Ti1)}3 | Ti-6.4Al-3.3Mo-0.3Si | 3.3 | 6.4 |
BT18Y | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti12.4Zr1.6](Mo0.32Nb0.48Sn0.74Si0.46Ti1)}3 | Ti-6.5Al-2Sn-4Zr-0.7Mo-1Nb-0.3Si | 1.0 | 7.8 |
BT25 | α-{Al2Ti14}15 + β-{Al -Ti12.8Zr1.2](Mo1.38 Sn1.14Si0.48)}2 | Ti-6.8Al-2Sn-1.7Zr-2Mo-0.2Si | 2.0 | 7.8 |
BT25Y | α-{Al2Ti14}15 + β-{[Al -Ti10.4Zr3.6] (Mo1.77W0.24Sn0.69Si0.3)}2 | Ti-6.5Al-2Sn-4Zr-4Mo-0.2Si-1W | 4.5 | 7.8 |
7715D | α-{[Al-Ti12](AlTi2)}13 + β-{[Al-Ti13.4Zr0.6](Mo0.81Nb0.85Ce0.02Sn0.98Si0.34)}4 | Ti-6.5Al-3Sn-2Zr-2Mo-2Nb-0.25Si-0.05Ce | 2.6 | 7.8 |
Ti750 | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti8.7Zr5.3](W0.39Nb0.60Sn1.53Si0.48)}3 | Ti-6Al-4Sn-9Zr-1.21Nb-1.6W-0.3Si | 1.1 | 8.8 |
Table 1 Cluster formulas and compositions of the designed Ti5666, Ti-6Al-4V, IMI834, Ti1100, TA29, TA33, TA15, BT3-1, Ti-811, Ti600, Ti-6242S, TA35, IMI685, BT8, BT36, BT25, BT25Y, 7715D, Ti750, and the reference Ti65
Material | Cluster formulas (at.%) | Compositions (wt%) | [Mo]eq a (wt%) | [Al]eqb (wt%) |
---|---|---|---|---|
Ti5666 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti12Zr2](Mo0.125Nb0.125Ta0.5W0.25Sn1.5Si0.5)}5 | Ti-5.4Al-6.4Zr-6.2Sn-0.4Mo-1.6W-0.4Nb-3.2Ta-0.5Si | 2.0 | 8.6 |
Ti-6Al-4V | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti14](V2Ti1)}5 | Ti-6Al-4V | 2.7 | 6.0 |
Ti65 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13.03Zr0.97](Mo0.08Nb0.1Ta0.32W0.14Sn0.96Si0.4Ti1)}5 | Ti-5.9Al-4Sn-3.5Zr-0.3Mo-0.3Nb-2.0Ta-0.4Si-1.0W-0.05C | 1.3 | 7.8 |
BT36 | α-{[Al-Ti12](AlTi2)}15 + β-{[Al-Ti11.6Zr2.4](Mo0.3Sn0.9Si0.3W1.5)}2 | Ti-6.2Al-2Sn-3.6Zr-0.7Mo-0.15Si-5W | 3.2 | 7.8 |
IMI834 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13.03Zr0.97](Mo0.18Nb0.24Sn1.12Si0.46Ti1)}5 | Ti-5.8Al-4Sn-3.5Zr-0.5Mo-0.7Nb-0.4Si-0.06C | 0.7 | 7.7 |
Ti1100 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13Zr1](Mo0.1Sn0.55Si0.35Ti2)}5 | Ti-6.0Al-2.7Sn-4Zr-0.4Mo-0.4Si | 0.4 | 7.6 |
TA15 | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti13.2Zr0.8](Mo0.35V0.65Ti2)}3 | Ti-6.5Al-1V-1Mo-2Zr | 1.7 | 6.8 |
BT3-1 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti14](Mo0.62Cr0.92Fe0.21Si0.25Ti1)}6 | Ti-6Al-2.5Mo-2Cr-0.5Fe-0.3Si | 7.1 | 6.0 |
Ti-811 | α-{[Al-Ti12](AlTi2)}11 + β-{[Al-Ti14](Al1.2V1.2Mo0.6)}2 | Ti-8Al-1Mo-1V | 1.7 | 8.0 |
Ti600 | α-{[Al1-Ti12](Al1Ti2)}11 + β-{[Al1-Ti13.17Zr0.83](Mo0.09Si0.36Y0.02Sn0.53Ti2)}6 | Ti-6.0Al-2.8Sn-4.0Zr-0.4Mo-0.45Si-0.1Y | 0.4 | 7.6 |
Ti-6242S | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti13Zr1](Mo0.51Sn0.42Si0.07Ti2)}3 | Ti-6Al-2Sn-4Zr-2Mo-0.08Si | 2.0 | 7.3 |
TA29 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13Zr1](Ta0.26Nb0.24Sn1.06Si0.44Ti1)}5 | Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si-0.06C | 0.5 | 7.8 |
TA33 | α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti13Zr1](Mo0.22Nb0.16Ta0.18Sn1.02Si0.42Ti1)}5 | Ti-5.8Al-4Sn-3.5Zr-0.7Mo-0.5Nb-1.1Ta-0.4Si-0.06C | 1.1 | 7.7 |
TA35 | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti12.4Zr1.6](Mo0.34Nb0.68Sn0.53Si0.45Ti1)}3 | Ti-6Al-2Sn-4Zr-1Mo-2Nb-0.4Si | 1.6 | 7.3 |
IMI685 | α-{[Al-Ti12](AlTi2)}13 + β-{[Al-Ti14](Mo0.16Sn1.52Si0.32Ti1)}4 | Ti-6Al-5Sn-0.4Mo-0.25Si | 0.4 | 7.7 |
BT8 | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti14] (Mo1.5Si0.5Ti1)}3 | Ti-6.4Al-3.3Mo-0.3Si | 3.3 | 6.4 |
BT18Y | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti12.4Zr1.6](Mo0.32Nb0.48Sn0.74Si0.46Ti1)}3 | Ti-6.5Al-2Sn-4Zr-0.7Mo-1Nb-0.3Si | 1.0 | 7.8 |
BT25 | α-{Al2Ti14}15 + β-{Al -Ti12.8Zr1.2](Mo1.38 Sn1.14Si0.48)}2 | Ti-6.8Al-2Sn-1.7Zr-2Mo-0.2Si | 2.0 | 7.8 |
BT25Y | α-{Al2Ti14}15 + β-{[Al -Ti10.4Zr3.6] (Mo1.77W0.24Sn0.69Si0.3)}2 | Ti-6.5Al-2Sn-4Zr-4Mo-0.2Si-1W | 4.5 | 7.8 |
7715D | α-{[Al-Ti12](AlTi2)}13 + β-{[Al-Ti13.4Zr0.6](Mo0.81Nb0.85Ce0.02Sn0.98Si0.34)}4 | Ti-6.5Al-3Sn-2Zr-2Mo-2Nb-0.25Si-0.05Ce | 2.6 | 7.8 |
Ti750 | α-{[Al-Ti12](AlTi2)}14 + β-{[Al-Ti8.7Zr5.3](W0.39Nb0.60Sn1.53Si0.48)}3 | Ti-6Al-4Sn-9Zr-1.21Nb-1.6W-0.3Si | 1.1 | 8.8 |
Fig. 5 TEM micrographs of Ti5666 at the as-cast state: a TEM BF images and the corresponding SAED patterns showing electron diffraction of α phase, b HRTEM image taken from nearby the lath (“A” point, in a), c lattice image as selected by yellow box (in b) and corresponding FFT spectrum of SAED from B region of β phases, d lattice image as selected by white box (in b) and corresponding FFT spectrum of SADP from C region of α phases, and e lattice image as selected by blue box (in b) and corresponding FFT spectrum of SADP from D region of interface between α and β phases
Materials | Upon 25 °C tests | Upon 600 °C tests | Upon 650 °C tests | Upon 700 °C tests | ||||
---|---|---|---|---|---|---|---|---|
α width (μm) | β (vol.%) | α width (μm) | β (vol.%) | α width (μm) | β (vol.%) | α width (μm) | β (vol.%) | |
Ti5666 | 0.2 | 5 | 0.2 | 7.5 | 0.2 | 9.3 | 0.3 | 36.4 |
Ti65 | 0.7 | 4.1 | 0.7 | 4.2 | 0.8 | 8.4 | 0.8 | 15.3 |
Table 2 Widths of α a plates and volume fractions of β phase in Ti5666 and Ti65 after different temperature tensile tests
Materials | Upon 25 °C tests | Upon 600 °C tests | Upon 650 °C tests | Upon 700 °C tests | ||||
---|---|---|---|---|---|---|---|---|
α width (μm) | β (vol.%) | α width (μm) | β (vol.%) | α width (μm) | β (vol.%) | α width (μm) | β (vol.%) | |
Ti5666 | 0.2 | 5 | 0.2 | 7.5 | 0.2 | 9.3 | 0.3 | 36.4 |
Ti65 | 0.7 | 4.1 | 0.7 | 4.2 | 0.8 | 8.4 | 0.8 | 15.3 |
Fig. 8 Prismatic I {10-10}, prismatic II {11-20)} and pyramidal {11-21)} for fine α grain regions and coarser α grains regions in Ti5666 a-f and Ti65 g-l at the as-cast state. Fine α grains were selected as length ≤ 30 μm
Fig. 9 Engineering tensile stain-stress curves of as-cast Ti5666 and Ti65 at ambient temperature a, and at 600 ℃, 650 ℃ and 700 ℃ b, comparisons of mechanical properties between present Ti5666 and reported Ti alloys at the as-cast state c, and after 520-650 ℃ tests d. HIP denote hot isostatic pressing. Present work is marked with arrow
[1] | Q.Y. Zhao, Q.Y. Sun, S.W. Xin, Y.N. Chen, C. Wu, H. Wang, J.W. Xu, M.P. Wan, W.D. Zeng, Y.Q. Zhao, Mater. Sci. Eng. A 845, 143260 (2022) |
[2] | L. Shao, W.S. Li, D.Y. Li, G.L. Xie, C.Z. Zhang, C. Zhang, J.F. Huang, J. Alloys Compd. 960, 170584 (2023) |
[3] | D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013) |
[4] | Y. Wen, X. Sun, J. Zhou, B.L. Liu, H.J. Guo, Y.X. Li, F. Yin, L.Q. Wang, L.H. Xie, L. Hua, Acta Metall. Sin. -Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01743-8 |
[5] | S.Z. Zhang, Y.K. Wang, B. Zhou, F.C. Meng, H. Zhang, S.J. Li, Q.M. Hu, L. Zhou, Acta Metall. Sin. -Engl. Lett. 36, 35 (2023) |
[6] | W. Chen, C.J. Boehlert, Int. J.Fatigue 32, 799 (2010) |
[7] | B.B. Jiang, D.H. Wen, Q. Wang, J.D. Che, C. Dong, P.K. Liaw, F. Xu, L.X. Sun, J. Mater. Sci. Technol. 35, 1008 (2019) |
[8] | P. Agrawal, S. Karthikeyan, S.K. Makineni, B. Gault, D. Banerjee, Acta Mater. 222, 117436 (2022) |
[9] | V.K. Chandravanshi, A. Bhattacharjee, S.V. Kamat, T.K. Nandy, J. Alloys Compd. 589, 336 (2014) |
[10] | Y.F. Han, W.D. Zeng, Y.L. Qi, Y.Q. Zhao, Mater. Sci. Eng. A 528, 8410 (2011) |
[11] |
K. Yue, J. Liu, H. Zhang, H. Yu, Y. Song, Q. Hu, Q. Wang, R. Yang, J. Mater. Sci. Technol. 36, 91 (2020)
DOI |
[12] | P.L. Narayana, S.W. Kim, J.K. Hong, N.S. Reddy, J.T. Yeom, Mater. Sci. Eng. A 718, 287 (2018) |
[13] | L.Q. Wang, W.J. Lv, J. Lv, J.N. Qin, D. Zhang, Trans. Nonferrous Met. Soc. China 22, 516 (2012) |
[14] | M.M. Zhang, J.K. Qiu, C. Fang, M.J. Zhang, Y.J. Ma, Z.Q. Yang, J.F. Lei, R. Yang, J. Mater. Res. Technol. 27, 1579 (2023) |
[15] | F.W. Chen, Y.L. Gu, G.L. Xu, Y.W. Cui, H. Chang, L. Zhou, Mater. Des. 185, 108251 (2020) |
[16] | Y.X. An, Y.C. Deng, X.Y. Zhang, B.F. Wang, Mater. Sci. Eng. A 854, 143776 (2022) |
[17] | Z.X. Zhang, J.K. Fan, R.F. Li, H.C. Kou, Z.Y. Chen, Q.J. Wang, H.L. Zhang, J. Wang, Q. Gao, J.S. Li, J. Mater. Sci. Technol. 75, 265 (2021) |
[18] | Z.C. Sun, F.X. Han, H.L. Wu, H. Yang, J. Mater. Process. Technol. 229, 72 (2016) |
[19] | G. Vogl, W. Petry, Th. Flottmann, A. Heiming, Phys. Rev. B 39, 5025 (1989) |
[20] | C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu, J.H. Xia, J. Phys. D Appl. Phys. 40, R273 (2007) |
[21] | C. Dong, Z.J. Wang, S. Zhang, Y.M. Wang, Int. Mater. Rev. 65, 286 (2019) |
[22] | S. Zhang, Q. Wang, C. Dong, J. Mater. Inf. 1, 1 (2021) |
[23] | Z.M. Li, X.N. Li, Y.L. Hu, Y.H. Zheng, M. Yang, N.J. Li, L.X. Bi, R.W. Liu, Q. Wang, C. Dong, Y.X. Jiang, X.W. Zhang, Acta Mater. 203, 116458 (2021) |
[24] | Y. Ma, Q. Wang, X. Zhou, J. Hao, B. Gault, Q. Zhang, C. Dong, T.G. Nieh, Adv. Mater. 33, 1 (2021) |
[25] | T.Y. Liu, S. Zhang, Q. Wang, X.H. Min, C. Dong, Sci. China Technol. Sci. 64, 1732 (2021) |
[26] | J.W. Elmer, T.A. Palmer, S.S. Babu, E.D. Specht, Mater. Sci. Eng. A 391, 104 (2005) |
[27] | J.H. Kim, S.L. Semiatin, Y.H. Lee, C.S. Lee, Metall. Mater. Trans. A 42, 1805 (2010) |
[28] | Z.H. Zhu, T.Y. Liu, M.F. Song, Z.P. Chen, S. Zhang, C. Dong, Trans. Nonferrous Met. Soc. China 33, 3364 (2023) |
[29] | Z.H. Zhu, C.Y. Wang, X.N. Huang, T.Y. Liu, C. Dong, Mater. Sci. Eng. A 883, 145519 (2023) |
[30] | Z.H. Zhu, T.Y. Liu, C. Dong, D.D. Dong, S. Zhang, Q. Wang, J. Mater. Res. Technol. 18, 2582 (2022) |
[31] | P. Zhu, S. Yang, Z.J. Gao, J.R. Liu, L. Zhou, J. Mater. Res. Technol. 29, 5271 (2024) |
[32] | T. Kostiuchenko, A.V. Ruban, J. Neugebauer, A. Shapeev, F. Körmann, Phys. Rev. Mater. 4, 113802 (2020) |
[33] | X. Chen, Q. Wang, Z. Cheng, M. Zhu, H. Zhou, P. Jiang, L. Zhou, Q. Xue, F. Yuan, J. Zhu, X. Wu, E. Ma,Nature 592, 712 (2021) |
[34] | A. Takeuchi, A. Inoue, Mater. Trans. JIM 46, 2817 (2005) |
[35] | Y.H. Liu, Z.H. Zhu, S. Zhang, C. Dong, J. Aeronaut. Mater. 43, 42 (2023) |
[36] | P. Davies, R. Pederson, M. Coleman, S. Birosca, Acta Mater. 117, 51 (2016) |
[37] | M. Es-Souni, Metall. Mater. Trans. A 32, 285 (2001) |
[38] | Z.X. Zhang, J.K. Fan, Z.H. Wu, D. Zhao, Q. Gao, Q.B. Wang, Z.Y. Chen, B. Tang, H.C. Kou, J.S. Li, J. Alloys Compd. 831, 154786 (2020) |
[39] | Q.J. Sun, X. Xie, Mater. Sci. Eng. A 724, 493 (2018) |
[40] | C. Cai, B. Song, P.J. Xue, Q.S. Wei, C.Z. Yan, Y.S. Shi, Mater. Des. 106, 371 (2016) |
[41] | S.X. Liang, L.X. Yin, R.J. Jiang, X.Y. Zhang, M.Z. Ma, R.P. Liu, J. Alloys Compd. 603, 42 (2014) |
[42] | S. Joseph, I. Bantounas, T.C. Lindley, D. Dye, Int. J. Plast. 100, 90 (2018) |
[43] | L. Zhang, W.H. Liao, T.T. Liu, H.L. Wei, C.C. Zhang, Acta Metall. Sin. -Engl. Lett. 35, 439 (2022) |
[44] | S. Birosca, J.Y. Buffiere, M. Karadge, M. Preuss, Acta Mater. 59, 1510 (2011) |
[45] | Q. Yong, The Second Phase in Steels (Metallurgical Industry Press, Beijing, 2006), p.147 |
[1] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[2] | Zulai Li, Yingxing Zhang, Junlei Zhang, Xiang Chen, Suokun Chen, Lujian Cui, Shengjie Han. Microstructure Characteristics, Texture Evolution and Mechanical Properties of Al-Mg-Si-Mn-xCu Alloys via Extrusion and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1501-1522. |
[3] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[4] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[5] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[6] | Long Liu, Zijian Zhou, Jie Yu, Xinguang Wang, Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Hot Deformation Behavior and Workability of a New Ni-W-Cr Superalloy for Molten Salt Reactors [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1453-1466. |
[7] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
[8] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[9] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[10] | Qian Wang, Peng Yu, Haoran Lin, Chongzhi Guo, Xiaoqiang Hu. Joined AZ31B Magnesium Alloys with Ag Interlayer by Ultrasonic-Induced Transient Liquid Phase Bonding in Air [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1177-1185. |
[11] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. |
[12] | Chunyu Yue, Bowen Zheng, Ming Su, Yuxiang Wang, Xiaojiao Zuo, Yinxiao Wang, Xiaoguang Yuan. Effect of Y and Ce Micro-alloying on Microstructure and Hot Tearing of As-Cast Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 939-952. |
[13] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[14] | Hong-Wei Zhang, Li-Wei Lan, Zhe-Yu Yang, Chang-Chun Li, Wen-Xian Wang. Microstructure Evolution and Nanomechanical Behavior of Micro-Area in Molten Pool of Selective Laser Melting (CoCrNi)82Al9Ti9 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1019-1033. |
[15] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||