Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (1): 89-101.DOI: 10.1007/s40195-023-01648-y
Previous Articles Next Articles
Xinrui Zhang, Weijie Fu, Chen Wang, Zhenglong Lei(), Haoran Sun, Xudong Li
Received:
2023-09-27
Revised:
2023-11-08
Accepted:
2023-11-19
Online:
2024-01-10
Published:
2024-01-28
Contact:
Zhenglong Lei, Xinrui Zhang, Weijie Fu, Chen Wang, Zhenglong Lei, Haoran Sun, Xudong Li. Pore Formation Mechanism in W-C Hard Coatings Using Directed Energy Deposition on Tungsten Alloy[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 89-101.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 Micro morphologies in the WC-Ni-Co melting injection zone. a Initial microstructure of the WC coating; b-e EDS mapping of the W, C, Ni and Co elements
Fig. 4 Unmelted WC particles in the single DED track. a SEM image of the top view in the transverse section of the single track; b schematic diagram of the transverse section of the single track
Fig. 5 Transverse sections of the single tracks with different process parameters. (Some cross-sections of the tracks (10-15 mm/s) were quoted from our previous research [23]). a Forming quality of the single tracks with different process parameters; the track at a scanning speed of 5 mm/s and a power of b P = 1000 W, c P = 1250 W, d P = 1500 W, e P = 1750 W; the tracks at a scanning speed of 10 mm/s and a power of f P = 1500 W, g P = 1750 W [23]; the tracks at a power of 2500 W and a scanning speed of h 25 mm/s, i 30 mm/s
Fig. 6 SEM morphology and EDS maps of the pore in the base material below the fusion line. a SEM image of the pore; b-d elemental mapping distribution of W, Ni, and Co
Fig. 7 SEM image and EDS elemental distribution of the pore at the fusion line. a SEM image of the pore with an spherical shape; b-d elemental distribution of W, Ni, and Co
Fig. 8 Interfacial microstructures at the fusion line in different tracks. a Interfacial microstructure was W2C phase; b the interfacial microstructure was W + W2C phase; c the half-melted area in the tungsten alloy below the fusion line
Fig. 9 Numerical simulation results of the DED track. a Temperature field of the melting process; b a comparison of the melt pool size between the experimental and the simulation results; c the size of the vaporization area with a temperature range of 2730-2785 °C; d the half-melted area of the tungsten alloy
Fig. 10 Size of the vaporization area with a temperature range of 2785-2730 °C and solidification rate of the tracks with different DED process parameters. a Tracks at 2500 W with changed scanning speeds; b the tracks at 10 mm/s with changed laser powers
Fig. 11 Cross-section and microstructure of the track without powder feeding. a Macroscopic cross-section of the track (2500 W, 15 mm/s); b SEM image of the microstructure in the yellow box marked in Fig. 11a; c cross-section of the track (2500 W, 15 mm/s, the surface was preheated by a laser beam (1000 W, 10 mm/s)); d macroscopic cross-section of the track (2000 W, 10 mm/s); e macroscopic cross-section of the track (2000 W, 5 mm/s)
Fig. 12 Schematic diagram of vaporization of the binder phase and pore formation process. a Formation of a half-melted zone below the fusion line; b the evaporation of Ni/Co in the vaporization area; c the floating process of pores; d the merge of pores in the melt pool
[1] | S. Pappu, C. Kennedy, L.E. Murr, L.S. Magness, D. Kapoor, Mater. Sci. Eng. A 262, 115 (1999) |
[2] | A.Y. Adesina, Z. Iqbal, F.A. Al-Badour, Z.M. Gasem, J. Mater. Res. Technol. 8, 436 (2018) |
[3] | J. Jacobs, A. Haque, A. Kulkarni, J. Singh, L. Matson, Int. J. Refract. Met. Hard Mater. 84, 104976 (2019) |
[4] | M. Rieth, S.L. Dudarev, S.G. De Vicente, J. Aktaa, T. Ahlgren, S. Antusch, J. Nucl. Mater. 432, 482 (2013) |
[5] | Y. Katoh, L.L. Snead, L.M. Garrison, X. Hu, T. Koyanagi, C.M. Parish, J. Nucl. Mater. 520, 193 (2019) |
[6] | S.J. Zinkle, L.J. Ott, D.T. Ingersoll, R.J. Ellis, M.L. Grossbeck,AIP Conf. Proc. 608, 1063 (2002) |
[7] | Z.S. Levin, K.T. Hartwig, Mater. Sci. Eng. A 635, 94 (2015) |
[8] | H. Sattar, S. Jielin, H. Ran, M. Imran, W. Ding, P.D. Gupta, H. Ding, J. Nucl. Mater. 540, 152389 (2020) |
[9] | R. Gero, L. Borukhin, I. Pikus, Mater. Sci. Eng. A 302, 162 (2001) |
[10] | S.A. Maloy, R.S. Lillard, W.F. Sommer, D.P. Butt, F.D. Gac, G.J. Willcutt, M.R. Louthan Jr., J. Nucl. Mater. 431, 140 (2012) |
[11] | J.K. Yoon, K.W. Lee, S.J. Chung, I.J. Shon, J.M. Doh, G.H. Kim, J. Alloys Compd. 420, 199 (2006) |
[12] | Y. Jiang, J.F. Yang, R. Liu, X.P. Wang, Q.F. Fang, J. Nucl. Mater. 450, 75 (2014) |
[13] | S.W. Jung, S.J.L. Kang, D.K. Kim, S. Lee, J. Noh, Metall. Mater. Trans. A 30, 2027 ( 1999) |
[14] | S.W. Jung, S.J.L. Kang, S. Lee, J.W. Noh, W.H. Baek, Metall. Mater. Trans. A 33, 1213 (2002) |
[15] | Z. Zhao, F. Liu, M. Zhao, Q. Wang, L. Zhong, Y. Xu, J. Li, Appl. Surf. Sci. 513, 145868 (2020) |
[16] | B.Q. Wan, X.Y. Sun, H.T. Ma, R.F. Feng, Y.S. Li, Q. Yang, Surf. Coat. Technol. 284, 133 (2015) |
[17] | G.H. Wang, S.G. Qu, R.L. He, H.U. Ke, X.Q. Li, Trans. Nonferrous Met. Soc. China 26, 3161 (2016) |
[18] | K. Hu, G. Wang, X. Li, S. Qu, J. Alloys Compd. 787, 560 (2019) |
[19] | S. Eroglu, H. Ekren, T. Baykara, Scr. Mater. 38, 131 (1997) |
[20] | S. Cetinkaya, S. Eroglu, J. Alloys Compd. 632, 161 (2015) |
[21] | S.G. Qu, G.H. Wang, Z.X. Yang, F.Q. Lai, X.Q. Li, Rare Met. 38, 165 (2019) |
[22] | D.S. Wang, Z. Tian, L. Shen, Y. Huang, Appl. Laser 32, 85 (2012) |
[23] | X. Zhang, W. Fu, Z. Lei, S. Wu, J. Liang, B. Li, Surf. Coat. Technol. 470, 129827 (2023) |
[24] | Y.X. Gao, J.Z. Yi, P.D. Lee, T.C. Lindley, Acta Mater. 52, 5435 (2004) |
[25] | X. Li, U. Olofsson, Tribol. Int. 110, 86 (2017) |
[26] | F. Cao, Z. Shi, G.L. Song, M. Liu, M.S. Dargusch, A. Atrens, Corros. Sci. 94, 255 (2015) |
[27] | C.W. Park, N.K. Adomako, M.G. Lee, J.H. Kim, J.H. Kim, Int. J. Refract. Met. Hard Mater. 101, 105671 (2021) |
[28] | F. Arias-González, J. Del Val, R. Comesa.a, J. Penide, F. Lusqui.os, F. Quintero, Appl. Surf. Sci. 374, 197 (2016) |
[29] | C. Zhong, A. Gasser, J. Kittel, K. Wissenbach, R. Poprawe, Mater. Des. 98, 128 (2016) |
[30] | C. Zhou, S. Zhao, Y. Wang, F. Liu, W. Gao, X.J. Lin, Manuf. Mater. Process. 216, 69 (2015) |
[31] | X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Mater. Des. 2004(25), 137 (2004) |
[32] | Z. Yang, A. Wang, Z. Weng, D. Zhong, B. Ye, X. Qi, Surf. Coat. Technol. 321, 26 (2017) |
[33] | L. Li, D. Liu, Y. Chen, C. Wang, F. Li, Acta Mater. 57, 3606 (2009) |
[34] | P. Wang, B. Hu, X. Huang, C. Zheng, Calphad 73, 102252 (2021) |
[35] | R. Sarkar, V. Singh, S. Kumar, Y.V. Rao, P. Ghosal, T.K. Nandy, Philos. Mag. 99, 1240 (2019) |
[36] | A. Mukhopadhyay, B. Basu, J. Mater. Sci. 46, 571 (2011) |
[37] | G. Xu, C. Wu, X. Ma, X. Wang, Acta Metall. Sin. -Engl. Lett. 26, 352 (2013) |
[38] | N. Zhang, W. Liu, D. Deng, Z. Tang, X. Liu, Z. Yan, H. Zhang, Opt. Laser Technol. 108, 247 (2018) |
[39] | S.A. David, J.M. Vitek, Int. Mater. Rev. 1989(34), 213 (1989) |
[40] | X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, W. Voice, Mater. Des. 25, 137 (2004) |
[41] | V.Z. Kublii, T.V. Velikanova, Powder Metall. Met. Ceram. 43, 630 (2004) |
[42] | T. Dash, B.B. Nayak, Ceram. Int. 39, 3279 (2013) |
[43] | J.M. Amado, M.J. Tobar, J.C. Alvarez, J. Lamas, A. Yanez, Appl. Surf. Sci. 255, 5553 (2009) |
[44] | D.Z. Wang, K.L. Li, C.F. Yu, J. Ma, W. Liu, Z.J. Shen, Acta Metall. Sin. -Engl. Lett. 32, 127 (2019) |
[45] | J. Liu, J. Chen, L. Zhou, B. Liu, Y. Lu, S. Wu, Z. Qu, Acta Metall. Sin. -Engl. Lett. 34, 1245 (2021) |
[1] | Ling Zhang, Wen-He Liao, Ting-Ting Liu, Hui-Liang Wei, Chang-Chun Zhang. In Situ Elimination of Pores During Laser Powder Bed Fusion of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si Titanium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 439-452. |
[2] | Tao Sun, Yan Liu, Shu-Jun Li, Jian-Ping Li. Effect of HIP Treatment on Fatigue Notch Sensitivity of Ti-6Al-4V Alloy Fabricated by Electron Beam Melting [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 869-875. |
[3] | Yan Liu, Jun Zhang, Shu-Jun Li, Wen-Tao Hou, Hao Wang, Qin-Si Xu, Yu-Lin Hao, Rui Yang. Effect of HIP Treatment on Fatigue Crack Growth Behavior of Ti-6Al-4V Alloy Fabricated by Electron Beam Melting [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1163-1168. |
[4] | Jin-Long Cui,Zhen-Dong Yao,Yong-Fu Cui,Fu-Peng Cheng,Ting Xiao,Hong-Liang Sun,Ru-Jin Tian,Jun-Cai Sun. Electrochemical Properties of Tungsten-Alloying-Modified AISI 430 Stainless Steel as Bipolar Plates for PEMFCs used in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(10): 920-927. |
[5] | NIE Changshen WU Lin Nei Monggol Institute of Metallic Materials,Baotou,ChinaWANG Deyun Beifang Tools Factory,Mudanjiang,China Senior Engineer,Nei Monggol Institute of Metallic Materials,P.O.Box No.4 Baotou,Inner Mongolia,China. MICROSTRUCTURE OF REGENERATED HIGH DENSITY TUNGSTEN ALLOYS MADE BY OXIDATION-REDUCTION [J]. Acta Metallurgica Sinica (English Letters), 1989, 2(10): 272-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||