Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (10): 1603-1618.DOI: 10.1007/s40195-023-01575-y
Previous Articles Next Articles
Jialin Zheng1, Longteng Li2, Huiping Wu1, Doudou Yang3, Bin Wang3, Dayong An1, Xifeng Li1()
Received:
2023-02-21
Revised:
2023-03-29
Accepted:
2023-04-25
Online:
2023-10-10
Published:
2023-07-08
Contact:
Xifeng Li, Jialin Zheng, Longteng Li, Huiping Wu, Doudou Yang, Bin Wang, Dayong An, Xifeng Li. Low-Temperature Diffusion Bonding Behavior of Hydrogenated Zr R60702[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(10): 1603-1618.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 Differences between SPPs in different Zr R60702 specimens: a the original and processed diagrams of SPPs distribution; b SPPs size distribution
Fig. 4 DSC curves of Zr R60702: a as-received, b with 0.1 wt% hydrogen addition, c with 0.3 wt% hydrogen addition, d with 0.5 wt% hydrogen addition; e TG curves of as-received and hydrogenated Zr R60702; f TG curves of as-received and hydrogenated Zr R60702 after DB at 750 °C; g phase transition diagram of as-received and hydrogenated Zr R60702
0 | 0.1 | 0.3 | 0.5 | |
---|---|---|---|---|
Tα→β (°C) | 800 | 702 | 697 | 627 |
Tα+β (°C) | 161 | 207 | 281 | 351 |
Table 1 Tα→β and Tα+β of Zr R60702 with different hydrogen contents (wt%)
0 | 0.1 | 0.3 | 0.5 | |
---|---|---|---|---|
Tα→β (°C) | 800 | 702 | 697 | 627 |
Tα+β (°C) | 161 | 207 | 281 | 351 |
Fig. 5 Phase maps of a as-received, b 0.1 wt%, c 0.3 wt% and d 0.5 wt% hydrogenated Zr R60702; e XRD patterns and f phase content of as-received and hydrogenated Zr R60702
Fig. 8 a-h Recrystallization maps of the a, e as-received, b, f 0.1 wt%, c, g 0.3 wt% and d, h 0.5 wt% hydrogenated Zr R60702 a-d before and e-h after DB at 750 °C; i-l recrystallization volume fraction of the i as-received, j 0.1 wt%, k 0.3 wt% and l 0.5 wt% hydrogenated Zr R60702 before and after DB at 750 °C
Fig. 9 Joints diffusion bonded at different technical parameters: a 900 °C, unhydrogenated; b 850 °C, unhydrogenated; c 800 °C, unhydrogenated; d 750 °C, unhydrogenated; e 750 °C, 0.1 wt% hydrogenated; f 750 °C, 0.3 wt% hydrogenated; g 750 °C, 0.5 wt% hydrogenated
Fig. 10 a Shear strengths of the joints diffusion bonded under different techniques; b-e Shear fracture morphology of unhydrogenated joint diffusion bonded at b 900 °C, c 850 °C, d 800 °C, e 750 °C; f-i shear fracture morphology of joint diffusion bonded at 750 °C with f 0.1 wt%, g 0.3 wt%, h 0.5 wt% hydrogen addition with sealant coating and i with 0.3 wt% hydrogen addition but without sealant coating
hcp-Zr (α) | bcc-Zr (β) | ||
---|---|---|---|
Lattice parameters | a (Å) | c (Å) | a (Å) |
Present work | 3.232 | 5.148 | 3.567 |
Experiment [ | 3.233 | 5.146 | 3.627 |
DFT 1 [ | 3.236 | 5.168 | 3.574 |
DFT 2 [ | 3.232 | 5.182 | 3.580 |
Table 2 Calculated lattice parameters of α-Zr and β-Zr
hcp-Zr (α) | bcc-Zr (β) | ||
---|---|---|---|
Lattice parameters | a (Å) | c (Å) | a (Å) |
Present work | 3.232 | 5.148 | 3.567 |
Experiment [ | 3.233 | 5.146 | 3.627 |
DFT 1 [ | 3.236 | 5.168 | 3.574 |
DFT 2 [ | 3.232 | 5.182 | 3.580 |
Fig. 11 Crystal models of Zr-H systems (H: Zr = 1:8): a O-site in α-Zr; b T-site in α-Zr; c O-site in β-Zr; d T-site in β-Zr. (Green and white atoms represent Zr and H, respectively)
Lattice constants | Zr | 16Zr-H | 8Zr-H | 4Zr-H | |||
---|---|---|---|---|---|---|---|
O-Site | T-Site | O-Site | T-Site | O-Site | T-Site | ||
a (Å) | 3.232 | 3.231 | 3.231 | 3.226 | 3.235 | 3.239 | 3.251 |
b (Å) | 3.232 | 3.231 | 3.231 | 3.226 | 3.235 | 3.210 | 3.231 |
c (Å) | 5.148 | 5.177 | 5.202 | 5.206 | 5.244 | 5.237 | 5.314 |
α (deg.) | 90.00 | 89.89 | 89.96 | 90.01 | 90.00 | 90.00 | 90.00 |
β (deg.) | 90.00 | 90.11 | 90.04 | 89.99 | 90.01 | 90.91 | 89.41 |
γ (deg.) | 120.0 | 120.0 | 120.0 | 120.0 | 120.0 | 119.7 | 119.8 |
V (Å3) | 46.57 | 46.80 | 47.04 | 46.92 | 47.53 | 47.28 | 48.43 |
Table 3 Calculated lattice constants of α-Zr
Lattice constants | Zr | 16Zr-H | 8Zr-H | 4Zr-H | |||
---|---|---|---|---|---|---|---|
O-Site | T-Site | O-Site | T-Site | O-Site | T-Site | ||
a (Å) | 3.232 | 3.231 | 3.231 | 3.226 | 3.235 | 3.239 | 3.251 |
b (Å) | 3.232 | 3.231 | 3.231 | 3.226 | 3.235 | 3.210 | 3.231 |
c (Å) | 5.148 | 5.177 | 5.202 | 5.206 | 5.244 | 5.237 | 5.314 |
α (deg.) | 90.00 | 89.89 | 89.96 | 90.01 | 90.00 | 90.00 | 90.00 |
β (deg.) | 90.00 | 90.11 | 90.04 | 89.99 | 90.01 | 90.91 | 89.41 |
γ (deg.) | 120.0 | 120.0 | 120.0 | 120.0 | 120.0 | 119.7 | 119.8 |
V (Å3) | 46.57 | 46.80 | 47.04 | 46.92 | 47.53 | 47.28 | 48.43 |
Lattice constants | Zr | 16Zr-H | 8Zr-H | 4Zr-H | |||
---|---|---|---|---|---|---|---|
O-Site | T-Site | O-Site | T-Site | O-Site | T-Site | ||
a (Å) | 3.567 | 3.201 | 3.582 | 3.205 | 3.214 | 3.222 | 3.258 |
b (Å) | 3.567 | 3.206 | 3.579 | 3.182 | 3.222 | 3.201 | 3.209 |
c (Å) | 3.567 | 4.525 | 3.578 | 4.576 | 4.570 | 4.570 | 4.618 |
α (deg.) | 90.00 | 89.95 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 |
β (deg.) | 90.00 | 90.00 | 90.00 | 90.00 | 90.11 | 90.00 | 89.99 |
γ (deg.) | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 89.89 |
V (Å3) | 45.39 | 46.43 | 45.86 | 46.68 | 47.32 | 47.13 | 48.28 |
Table 4 Calculated lattice constants of β-Zr
Lattice constants | Zr | 16Zr-H | 8Zr-H | 4Zr-H | |||
---|---|---|---|---|---|---|---|
O-Site | T-Site | O-Site | T-Site | O-Site | T-Site | ||
a (Å) | 3.567 | 3.201 | 3.582 | 3.205 | 3.214 | 3.222 | 3.258 |
b (Å) | 3.567 | 3.206 | 3.579 | 3.182 | 3.222 | 3.201 | 3.209 |
c (Å) | 3.567 | 4.525 | 3.578 | 4.576 | 4.570 | 4.570 | 4.618 |
α (deg.) | 90.00 | 89.95 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 |
β (deg.) | 90.00 | 90.00 | 90.00 | 90.00 | 90.11 | 90.00 | 89.99 |
γ (deg.) | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 90.00 | 89.89 |
V (Å3) | 45.39 | 46.43 | 45.86 | 46.68 | 47.32 | 47.13 | 48.28 |
Bond | Population | Bond | Population | ||
---|---|---|---|---|---|
α-Zr | α-Zr-H | α-Zr | α-Zr-H | ||
Zr1-Zr2 | 0.26 | 0.29 | Zr3-Zr5 | 0.40 | 0.44 |
Zr1-Zr3 | 0.40 | 0.44 | Zr3-Zr6 | − 0.23 | − 0.14 |
Zr1-Zr4 | 0.26 | 0.29 | Zr3-Zr7 | 0.40 | 0.44 |
Zr1-Zr5 | 0.40 | 0.43 | Zr3-Zr8 | 0.26 | 0.09 |
Zr1-Zr6 | 0.26 | 0.24 | Zr4-Zr5 | − 0.23 | − 0.21 |
Zr1-Zr7 | 0.40 | 0.43 | Zr4-Zr6 | 0.40 | 0.47 |
Zr1-Zr8 | − 0.23 | − 0.21 | Zr4-Zr7 | 0.26 | 0.29 |
Zr2-Zr3 | 0.26 | 0.09 | Zr4-Zr8 | 0.40 | 0.27 |
Zr2-Zr4 | 0.40 | 0.27 | Zr5-Zr6 | 0.26 | 0.24 |
Zr2-Zr5 | 0.26 | 0.29 | Zr5-Zr7 | 0.40 | 0.43 |
Zr2-Zr6 | 0.40 | 0.47 | Zr5-Zr8 | 0.26 | 0.29 |
Zr2-Zr7 | − 0.23 | − 0.21 | Zr6-Zr7 | 0.26 | 0.24 |
Zr2-Zr8 | 0.40 | 0.27 | Zr6-Zr8 | 0.40 | 0.47 |
Zr3-Zr4 | 0.26 | 0.09 | Zr7-Zr8 | 0.26 | 0.29 |
Table 5 Calculated bond population of Zr atoms in α-Zr and α-Zr-H systems
Bond | Population | Bond | Population | ||
---|---|---|---|---|---|
α-Zr | α-Zr-H | α-Zr | α-Zr-H | ||
Zr1-Zr2 | 0.26 | 0.29 | Zr3-Zr5 | 0.40 | 0.44 |
Zr1-Zr3 | 0.40 | 0.44 | Zr3-Zr6 | − 0.23 | − 0.14 |
Zr1-Zr4 | 0.26 | 0.29 | Zr3-Zr7 | 0.40 | 0.44 |
Zr1-Zr5 | 0.40 | 0.43 | Zr3-Zr8 | 0.26 | 0.09 |
Zr1-Zr6 | 0.26 | 0.24 | Zr4-Zr5 | − 0.23 | − 0.21 |
Zr1-Zr7 | 0.40 | 0.43 | Zr4-Zr6 | 0.40 | 0.47 |
Zr1-Zr8 | − 0.23 | − 0.21 | Zr4-Zr7 | 0.26 | 0.29 |
Zr2-Zr3 | 0.26 | 0.09 | Zr4-Zr8 | 0.40 | 0.27 |
Zr2-Zr4 | 0.40 | 0.27 | Zr5-Zr6 | 0.26 | 0.24 |
Zr2-Zr5 | 0.26 | 0.29 | Zr5-Zr7 | 0.40 | 0.43 |
Zr2-Zr6 | 0.40 | 0.47 | Zr5-Zr8 | 0.26 | 0.29 |
Zr2-Zr7 | − 0.23 | − 0.21 | Zr6-Zr7 | 0.26 | 0.24 |
Zr2-Zr8 | 0.40 | 0.27 | Zr6-Zr8 | 0.40 | 0.47 |
Zr3-Zr4 | 0.26 | 0.09 | Zr7-Zr8 | 0.26 | 0.29 |
Bond | Population | Bond | Population | ||
---|---|---|---|---|---|
β-Zr | β-Zr-H | β-Zr | β-Zr-H | ||
Zr1-Zr2 | 0.42 | 0.29 | Zr3-Zr6 | 0.42 | 0.33 |
Zr1-Zr3 | − 0.15 | 0.34 | Zr3-Zr8 | 0.42 | 0.28 |
Zr1-Zr4 | 0.42 | 0.31 | Zr4-Zr5 | 0.42 | 0.33 |
Zr1-Zr6 | 0.42 | 0.29 | Zr4-Zr7 | 0.42 | 0.31 |
Zr1-Zr8 | 0.42 | 0.31 | Zr4-Zr8 | − 0.15 | 0.34 |
Zr2-Zr3 | 0.42 | 0.33 | Zr5-Zr6 | 0.42 | 0.14 |
Zr2-Zr4 | − 0.15 | 0.29 | Zr5-Zr7 | − 0.15 | 0.22 |
Zr2-Zr5 | 0.42 | 0.14 | Zr5-Zr8 | 0.42 | 0.33 |
Zr2-Zr6 | − 0.15 | 0.2 | Zr6-Zr7 | 0.42 | 0.16 |
Zr2-Zr7 | 0.42 | 0.16 | Zr6-Zr8 | − 0.15 | 0.29 |
Zr3-Zr4 | 0.42 | 0.28 | Zr7-Zr8 | 0.42 | 0.31 |
Table 6 Calculated bond population of Zr atoms in β-Zr and β-Zr-H systems
Bond | Population | Bond | Population | ||
---|---|---|---|---|---|
β-Zr | β-Zr-H | β-Zr | β-Zr-H | ||
Zr1-Zr2 | 0.42 | 0.29 | Zr3-Zr6 | 0.42 | 0.33 |
Zr1-Zr3 | − 0.15 | 0.34 | Zr3-Zr8 | 0.42 | 0.28 |
Zr1-Zr4 | 0.42 | 0.31 | Zr4-Zr5 | 0.42 | 0.33 |
Zr1-Zr6 | 0.42 | 0.29 | Zr4-Zr7 | 0.42 | 0.31 |
Zr1-Zr8 | 0.42 | 0.31 | Zr4-Zr8 | − 0.15 | 0.34 |
Zr2-Zr3 | 0.42 | 0.33 | Zr5-Zr6 | 0.42 | 0.14 |
Zr2-Zr4 | − 0.15 | 0.29 | Zr5-Zr7 | − 0.15 | 0.22 |
Zr2-Zr5 | 0.42 | 0.14 | Zr5-Zr8 | 0.42 | 0.33 |
Zr2-Zr6 | − 0.15 | 0.2 | Zr6-Zr7 | 0.42 | 0.16 |
Zr2-Zr7 | 0.42 | 0.16 | Zr6-Zr8 | − 0.15 | 0.29 |
Zr3-Zr4 | 0.42 | 0.28 | Zr7-Zr8 | 0.42 | 0.31 |
Fig. 14 Schematic self-diffusion diagrams of Zr atoms: a α-Zr, b α-Zr-H, c β-Zr, d β-Zr-H; Energy variation during self-diffusion process of Zr atoms: e α-Zr, f α-Zr-H, g β-Zr, h β-Zr-H
System | Self-diffusion activation energy (eV) | Diffusion constant [ | Diffusion coefficient (m2 s−1) | |||
---|---|---|---|---|---|---|
527 °C | 627 °C | 727 °C | 827 °C | |||
α-Zr | 2.90 | 1.30 | 7.21 $\times$ 10−25 | 7.70 $\times$ 10−23 | 3.23 $\times$ 10−21 | 6.87 $\times$ 10−20 |
α-Zr-H | 2.81 | 1.26 | 2.75 $\times$ 10−24 | 2.52 $\times$ 10−22 | 9.35 $\times$ 10−21 | 1.80 $\times$ 10−19 |
β-Zr | 3.50 | 1.88 | 1.74 $\times$ 10−28 | 4.89 $\times$ 10−26 | 4.44 $\times$ 10−24 | 1.78 $\times$ 10−22 |
β-Zr-H | 3.19 | 1.42 | 9.89 $\times$ 10−27 | 1.72 $\times$ 10−24 | 1.06 $\times$ 10−22 | 3.11 $\times$ 10−21 |
Table 7 Calculated activation energy and self-diffusion coefficients of Zr atoms
System | Self-diffusion activation energy (eV) | Diffusion constant [ | Diffusion coefficient (m2 s−1) | |||
---|---|---|---|---|---|---|
527 °C | 627 °C | 727 °C | 827 °C | |||
α-Zr | 2.90 | 1.30 | 7.21 $\times$ 10−25 | 7.70 $\times$ 10−23 | 3.23 $\times$ 10−21 | 6.87 $\times$ 10−20 |
α-Zr-H | 2.81 | 1.26 | 2.75 $\times$ 10−24 | 2.52 $\times$ 10−22 | 9.35 $\times$ 10−21 | 1.80 $\times$ 10−19 |
β-Zr | 3.50 | 1.88 | 1.74 $\times$ 10−28 | 4.89 $\times$ 10−26 | 4.44 $\times$ 10−24 | 1.78 $\times$ 10−22 |
β-Zr-H | 3.19 | 1.42 | 9.89 $\times$ 10−27 | 1.72 $\times$ 10−24 | 1.06 $\times$ 10−22 | 3.11 $\times$ 10−21 |
[1] | W. Liu, L. Zhong, J. Peng, R. Liu, B. Zhou, Rare Met. Mater. Eng. 40, 1216 (2011) |
[2] |
D.O. Northwood, Mater. Des. 6, 58 (1985)
DOI URL |
[3] |
S. Lathabai, B. Jarvis, K. Barton, Sci. Technol. Weld. Joining 13, 573 (2008)
DOI URL |
[4] |
M. Slobodyan, Nucl. Eng. Technol. 53, 1049 (2020)
DOI URL |
[5] |
M.S. Wglowski, S. Bacha, A. Phillips, Vacuum 130, 72 (2016)
DOI URL |
[6] | S.B. Dunkerton, Weld. Met. Fabr. 59, 132 (1991) |
[7] |
M.L. Wayman, R.R. Smith, M.G. Wright, Metall. Trans. A 17, 429 (1986)
DOI URL |
[8] |
S. Zeng, G. You, F. Yao, J. Luo, X. Tong, Mater. Sci. Eng., A 804, 140782 (2021)
DOI URL |
[9] | R. Wang, G. Bai, L. Weng, Y. Zhang, E. Liu, J. Geng, J. Li, X. Xue, Rare Met. Mater. Eng. 43, 3188 (2014) |
[10] |
G. Bai, R. Wang, Y. Zhang, J. Mei, J. Li, X. Xue, Rare Met. Mater. Eng. 45, 2473 (2016)
DOI URL |
[11] | X. Cao, M. Yao, J. Peng, B. Zhou, Acta Metall. Sin. -Engl. Lett. 47, 882 (2011) |
[12] | D. Liu, C. Zhang, Z. Li, J. Zhou, M. Shi, F. Tian, Chin. J. Rare Met. 36, 335 (2012) |
[13] |
H. Chen, J. Cao, X. Tian, R. Li, J. Feng, Appl. Phys. A 113, 101 (2013)
DOI URL |
[14] |
J. Han, G. Sheng, X. Zhou, ISIJ Int. 48, 1238 (2008)
DOI URL |
[15] |
Z. Wang, C. Li, J. Qi, J. Feng, J. Cao, Int. J. Hydrogen Energy 44, 6929 (2019)
DOI URL |
[16] |
J. Feng, H. Liu, P. He, J. Cao, Int. J. Hydrogen Energy 32, 3054 (2007)
DOI URL |
[17] |
H. Liu, J. Cao, P. He, J. Feng, Int. J. Hydrogen Energy 34, 1108 (2009)
DOI URL |
[18] |
L. Zhang, Z. Sun, J. Shi, X. Ye, Z. Yang, J. Feng, Int. J. Hydrogen Energy 44, 3906 (2019)
DOI URL |
[19] |
H. Wu, H. Peng, X. Li, J. Chen, Mater. Sci. Eng. A 739, 244 (2018)
DOI URL |
[20] |
W.J.S. Yang, R.P. Tucker, B. Cheng, R.B. Adamson, J. Nucl. Mater. 138, 185 (1986)
DOI URL |
[21] |
G.W. Greenwood, Acta Metall. 4, 243 (1956)
DOI URL |
[22] |
C. Toffolon-Masclet, T. Guilbert, J.C. Brachet, J. Nucl. Mater. 372, 367 (2008)
DOI URL |
[23] | Z. Sun, G. Chen, X. Fu, Y. Wang, H. Hou, W. Zhou, Acta Metall. Sin. -Engl. Lett. 23, 357 (2010) |
[24] |
F. Briffod, A. Bleuset, T. Shiraiwa, M. Enoki, Acta Mater. 177, 56 (2019)
DOI |
[25] |
S. Rawat, N. Mitra, Comput. Mater. Sci. 141, 302 (2018)
DOI URL |
[26] | C. Xin, Rare Met. Mater. Eng. 48, 2400 (2019) |
[27] |
J. Zhang, Y. Zhao, C. Pantea, J. Qian, L.L. Daemen, P.A. Rigg, R.S. Hixson, C.W. Greeff, G.T. Gray, Y. Yang, L. Wang, Y. Wang, T. Uchida, J. Phys. Chem Solids. 66, 1213 (2005)
DOI URL |
[28] | B. Wang, Z. Peng, H. Liu, W. Li, P. Zhang, J. Appl. Phys. 109, 174113 (2011) |
[29] | H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, T. Saito, Phys. Rev. B 70, 3352 (2004) |
[30] | M. Li, X. Yao, Rare Met Mater. Eng. 42, 530 (2013) |
[31] |
Y. Ashida, M. Yamamoto, S. Naito, M. Mabuchi, T. Hashino, J. Appl. Phys. 80, 3254 (1996)
DOI URL |
[32] | M. Zhang, Dissertation, Harbin Institute of Technology (2017) |
[33] |
W.R. Kerr, Metall. Trans. A 16, 1077 (1985)
DOI URL |
[34] | Q. Wang, D. Sun, X. Han, W. Wang, Acta Metall. Sin. -Engl. Lett. 23, 106 (2010) |
[35] |
C.E. Ells, J. Nucl. Mater. 28, 129 (1968)
DOI URL |
[1] | Miao Chen, Wu Qin, Yixuan Hu, Yiren Wang, Yong Jiang, Xiaosong Zhou, Shuming Peng, Yibei Fu. Prediction on Phase Stabilities of the Zr-H System from the First-Principles [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 514-522. |
[2] | Zhonggang SUN, Guoqing CHEN, Xuesong FU, Yaoqi WANG, Hongliang HOU,Wenlong ZHOU. TEM investigations on hydrogen induced phasetransformation in Ti-6Al-4V alloys [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(5): 357-362. |
[3] | G. Ya; X.Y Zhang and Y. L. Du(State Key Laboratory for Corrosion and Protection, Institute of Corrosion and Protection of Metals,The Chinese Academy of Sciences, Shenyang 110015, China)(Applied Chemistry Division of Sciences Institute, Shenyang Polytechnic University, Shenyang 110023,China). A METHOD FOR DETERMINATION OF CONCENTRATION OF ATOMIC HYDROGEN PERMEATED IN MULTI-LAYER STRUCTURE WALL OF HYDROGENATION REACTORS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(6): 1283-1288. |
[4] | B.Z Cui; X. K. Sun; X.G. Zhao;W.Liu;Q.F. Xiao;T. Zhao; Z.D. Zhang andY.C.Sui(Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110015, China). EFFECTS OF HDDR PROCESS ON STRUCTURE AND MAGNETIC PROPERTIES OF Nd(Fe,Ti)_(12)N_δ PREPARED BY MECHANICAL ALLOYING [J]. Acta Metallurgica Sinica (English Letters), 1998, 11(1): 68-78. |
[5] | DUO Liang XU Zuxiong MA Ruzhang Beijing University of Science and Technology,Beijing.China Institute of High Energy Physics,Academia Sinica,P.O.Box 2732,Beijing,China. EFFECT OF HYDROGEN ABSORPTION ON MAGNETIC PROPERTIES OF AMORPHOUS Fe_(90-x) V_x Zr_(10) ALLOYS [J]. Acta Metallurgica Sinica (English Letters), 1989, 2(7): 55-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||