Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (6): 1047-1056.DOI: 10.1007/s40195-023-01545-4
Zhenyuan Zhu1,2, Fenfen Han2, Yanyan Jia2, Changying Wang3, Cuilan Ren2, Hanxun Qiu1(), Xingtai Zhou2(
)
Received:
2022-12-12
Revised:
2023-01-17
Accepted:
2023-01-31
Online:
2023-06-10
Published:
2023-04-07
Contact:
Hanxun Qiu,Zhenyuan Zhu, Fenfen Han, Yanyan Jia, Changying Wang, Cuilan Ren, Hanxun Qiu, Xingtai Zhou. Corrosion Behavior of GH3535 Alloy Induced by Selenium[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1047-1056.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Surfaces of alloy exposed in Se steam at 700 °C with a 0.4 mg/cm2 Se for 100 h, b 1 mg/cm2 Se for 100 h, and c 2 mg/cm2 Se for 100 h, d 4 mg/cm2 Se for 100 h, e 2 mg/cm2 Se for 500 h, f 2 mg/cm2 Se for 1000 h
Ni | Cr | Mo | Se | C | O | |
---|---|---|---|---|---|---|
1 | 4.8 | 25.9 | 24.2 | 20.8 | 9.6 | 13.4 |
2 | 1.4 | 30.6 | 0 | 52.0 | 9.4 | 6.6 |
3 | 53.7 | 0 | 0 | 37.5 | 6.2 | 2.7 |
4 | 5.7 | 28.2 | 0 | 55.2 | 9.0 | 2.0 |
Table 1 EDS analysis for the marked positions in Fig. 2 (wt%)
Ni | Cr | Mo | Se | C | O | |
---|---|---|---|---|---|---|
1 | 4.8 | 25.9 | 24.2 | 20.8 | 9.6 | 13.4 |
2 | 1.4 | 30.6 | 0 | 52.0 | 9.4 | 6.6 |
3 | 53.7 | 0 | 0 | 37.5 | 6.2 | 2.7 |
4 | 5.7 | 28.2 | 0 | 55.2 | 9.0 | 2.0 |
Fig. 3 Cross-sectional morphologies of the reaction layers and corresponding elemental analysis for the alloy exposed at 700 °C for 100 h with 2 mg/cm2 Se
Fig. 4 Cross-sectional morphologies of the reaction layers and corresponding elemental analysis for the alloy exposed at 700 °C for 500 h with 2 mg/cm2 Se
Fig. 5 Cross-sectional morphologies of the reaction layers and corresponding elemental analysis for the alloy exposed at 700 °C for 1000 h with 2 mg/cm2 Se
Fig. 7 TEM analysis of products in the inner reaction layer of the alloy subjected to 2 mg/cm2 Se annealed at 700 °C for 500 h: a morphology of the inner reaction layer, the EDS analysis for the point A b and B c in Fig. 6a, d and e SAED pattern analysis for point A in Fig. 6a, and point B in Fig. 6a f and g
Fig. 8 Yield strength and ultimate tensile strength of the alloy exposed at 700 °C: a for 100 h with various Se contents, b with various aging time (Se: 2 mg/cm2)
Se | Cohesive energy (eV/atom) | Sb | Cohesive energy (eV/atom) | Te | Cohesive energy (eV/atom) | |
---|---|---|---|---|---|---|
Ni | NiSe (R3m) | − 0.295 | Ni5Sb2 (mC28) | − 0.187 | Ni3Te2 (P21/m) | − 0.188 |
Cr | Cr2Se3 (R | − 0.524 | CrSb2 (I4/mcm) | 0.133 | Cr2Te3 (P | − 0.211 |
CrSb2 (Pnnm) | 0.085 | |||||
CrSb (P63/mmc) | 0.086 | |||||
Mo | MoSe2 (P63/mmc) | − 0.675 | Mo3Sb7(Im | − 0.017 | MoTe2 (P63/mmc) | − 0.269 |
MoTe2 (P21/m) | − 0.254 |
Table 2 Calculation of the cohesive energies for the intermetallic compounds using first-principal methods. (*The cohesive energies of antimonides and tellurides are quoted from Ref. [18])
Se | Cohesive energy (eV/atom) | Sb | Cohesive energy (eV/atom) | Te | Cohesive energy (eV/atom) | |
---|---|---|---|---|---|---|
Ni | NiSe (R3m) | − 0.295 | Ni5Sb2 (mC28) | − 0.187 | Ni3Te2 (P21/m) | − 0.188 |
Cr | Cr2Se3 (R | − 0.524 | CrSb2 (I4/mcm) | 0.133 | Cr2Te3 (P | − 0.211 |
CrSb2 (Pnnm) | 0.085 | |||||
CrSb (P63/mmc) | 0.086 | |||||
Mo | MoSe2 (P63/mmc) | − 0.675 | Mo3Sb7(Im | − 0.017 | MoTe2 (P63/mmc) | − 0.269 |
MoTe2 (P21/m) | − 0.254 |
Fig. 10 Calculated binding energy and segregation energy for atomic Te and Se at various sites of GBs: a Σ3 (1 1 1), b Σ5 (0 2 1), c Σ11 (1 1 $\overline{3 }$) GBs. (*The positions of various atomic sites and the date for Te calculation can be referred to the previous Ref. [21])
[1] | J.A. Lake, Prog. Nucl. Energy 40, 301 (2002) |
[2] | L. Mathieu, D. Heuer, R. Brissot, C. Garzenne, C. Le Brun, D. Lecarpentier, E. Liatard, J.M. Loiseaux, O. Meplan, E. Merle- Lucotte, Prog. Nucl. Energy 48, 664 (2006) |
[3] | W. Ren, G. Muralidharan, D.F. Wilson, D.E. Holcomb, Considerations of alloy N for fluoride salt-cooled high-temperature reactor applications. In: Paper presented at the ASME 2011 Pressure Vessels and Piping Conference (Baltimore, Maryland, USA, 2011), pp. 17-21 |
[4] | R. Kedl, Migration of a Class of Fission Products (noble metals) in the Molten-Salt Reactor Experiment (Oak Ridge National Lab, Tennessee, 1972) |
[5] |
Z. Cheng, Z. Zhao, J. Geng, W. Li, Q. Dou, Q. Li, J. Nucl. Mater. 566, 153807 (2022)
DOI URL |
[6] |
H. Cheng, F. Han, Y. Jia, Z. Li, X. Zhou, J. Nucl. Mater. 461, 122 (2015)
DOI URL |
[7] |
H. Cheng, B. Leng, K. Chen, Y. Jia, J. Dong, Z. Li, X. Zhou, Corros. Sci. 97, 1 (2015)
DOI URL |
[8] | J. Keiser, Status of Tellurium-Hastelloy N Studies in Molten Fluoride Salts (Oak Ridge National Lab., Tennessee, 1977), pp. 1-23 |
[9] |
J.R. Rellick, C.J. McMahon, H.L. Marcus, P.W. Palmberg, Metall. Trans. 2, 1492 (1971)
DOI |
[10] | H. McCoy, Intergranular Cracking of Structural Materials Exposed to Fuel Salt (Oak Ridge National Lab., Tennessee, 1972), pp. 128-136 |
[11] |
W.B. Kent, J. Vac. Sci. Technol. 11, 1038 (1974)
DOI URL |
[12] |
G. Thomas, T. Gibbons, Mater. Sci. Eng. 67, 13 (1984)
DOI URL |
[13] | Z. Dai, Thorium molten salt reactor nuclear energy system (TMSR), in Molten Salt Reactors and Thorium Energy. ed. by T.J. Dolan (Elsevier, Amsterdam, 2017), p. 531 |
[14] | Y. Liu, R. Yan, Y. Zou, S. Yu, B. Zhou, X. Kang, J. Hu, X. Cai, Prog. Nucl. Energy 122, 103289 (2020) |
[15] | X.Y. Wang, X. Wang, X.C. Zhang, S.F. Zhu, Nucl. Sci. Technol. 30, 1 (2019) |
[16] | K. Yu, Z. Jiang, X. Shi, C. Li, S. Chen, Z. Li, W. Tao, X. Zhou, evaluation on microstructure and mechanical properties of welded joints by GMAW in UNS N10003 alloy. In: Paper presented at the ASME 2017 Pressure Vessels and Piping Conference (Waikoloa, Hawaii, USA, 2017), pp. 16-20 |
[17] |
J.M. Wang, Y.Y. Jia, F.F. Han, Y.L. Lu, Z.Y. Zhu, X.X. Ye, W.X. Wang, S.L. Wang, X.T. Zhou, Corros. Sci. 207, 110576 (2022)
DOI URL |
[18] |
F.F. Han, M. Liu, Y.Y. Jia, C.Y. Wang, X.L. Li, L. Bin, R.D. Liu, X.T. Zhou, Corros. Sci. 177, 109013 (2020)
DOI URL |
[19] |
F. Han, X. Wang, Y. Jia, M. Liu, B. Leng, R. Liu, H. Huang, X. Zhou, Mater. Charact. 164, 110329 (2020)
DOI URL |
[20] |
J. Zheng, X. Hou, X. Wang, Y. Meng, X. Zheng, L. Zheng, Corros. Sci. 96, 186 (2015)
DOI URL |
[21] |
C. Wang, H. Han, D. Wickramaratne, W. Zhang, H. Wang, X. Ye, Y. Guo, K. Shao, P. Huai, RSC Adv. 7, 8421 (2017)
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||