Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (12): 2007-2013.DOI: 10.1007/s40195-022-01396-5

Previous Articles     Next Articles

Superb Strengthening Effect of Net-Like Distributed Amorphous Al2O3 on Creep Resistance of (B4C + Al2O3)/Al Neutron-Absorbing Materials

Y.N. Zan1,2, X. Lei3, J.F. Zhang2, D. Wang2, Q.Z. Wang1,2(), B.L. Xiao2, Z.Y. Ma1,2   

  1. 1Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
    2Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
    3Nuclear Equipment Division, Beijing Institute of Nuclear Engineering, China Nuclear Power Engineering Co., Ltd, Beijing, 100840, China
  • Received:2021-10-26 Revised:2021-12-25 Accepted:2022-01-10 Online:2022-12-10 Published:2022-05-08
  • Contact: Q.Z. Wang
  • About author:Q. Z. Wang, qzhwang@imr.ac.cn

Abstract:

B4C reinforced Al composites are widely used as neutron absorbing materials (NAMs) due to excellent neutron absorbing efficiency, however, such NAMs exhibit poor high-temperature properties. To meet the requirement for structure-function integration, NAMs with enhanced high-temperature mechanical properties are desired. In this work, a novel (B4C + Al2O3)/Al NAM with netlike distribution of Al2O3 was fabricated by powder metallurgy method and subjected to high-temperature tensile creep test. It was shown that the creep resistance was enhanced by several orders of magnitude via the addition of only 2.1 vol.% netlike-distributed Al2O3. (B4C + Al2O3)/Al exhibited high apparent stress exponents ranging from 16 to 25 and high apparent activation energy of 364 kJ/mol. The creep behaviour could be rationalized using the substructure-invariant model and its rupture behaviour could be described by the Dobes-Milicka equation.

Key words: Neutron absorber material, Al matrix composite, Tensile creep, B4C/Al