Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (3): 359-372.DOI: 10.1007/s40195-021-01191-8
Previous Articles Next Articles
Zhichuan Shen1,2, Jiawei Zhong1,2, Wenhao Xie1,2, Jinbiao Chen1,2, Xi Ke1,2(), Jianmin Ma3, Zhicong Shi1,2(
)
Received:
2020-10-16
Revised:
2020-11-07
Accepted:
2020-11-18
Online:
2021-03-10
Published:
2021-03-10
Contact:
Xi Ke,Zhicong Shi
About author:
Zhicong Shi, zhicong@gdut.edu.cnZhichuan Shen, Jiawei Zhong, Wenhao Xie, Jinbiao Chen, Xi Ke, Jianmin Ma, Zhicong Shi. Effect of LiTFSI and LiFSI on Cycling Performance of Lithium Metal Batteries Using Thermoplastic Polyurethane/Halloysite Nanotubes Solid Electrolyte[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(3): 359-372.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 SEM images under different magnifications of a, b PE separator, c, d SPCE and e, f digital photographs of flexible SPCE with a thickness of 34 μm
Fig. 2 FTIR spectra of a LiFSI and LiTFSI, b HNTs, TPU, and PE at 4000-500 cm-1, c TPU-HNTs-LiFSI-PE, TPU-HNTs-LiTFSI-PE, and TPU at 1800-700 cm-1. XPS spectra on C 1s of d TPU-HNTs-PE, e TPU-HNTs-LiTFSI-PE, and f TPU-HNTs-LiFSI-PE
Material | BE (eV) | ||||
---|---|---|---|---|---|
C-C | C-O | C = O | CF3 | Li | |
TPU-HNTs-PE | 284.75 | 286.16 | 288.69 | - | - |
TPU-HNTs-LiTFSI-PE | 284.78 | 286.25 | 288.89 | 292.44 | 56.58 |
TPU-HNTs-LiFSI-PE | 284.81 | 286.33 | 289.12 | - | 55.85 |
Table 1 Binding energy of C 1s of TPU-HNTs-PE, TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE in the XPS spectra in Fig. 2
Material | BE (eV) | ||||
---|---|---|---|---|---|
C-C | C-O | C = O | CF3 | Li | |
TPU-HNTs-PE | 284.75 | 286.16 | 288.69 | - | - |
TPU-HNTs-LiTFSI-PE | 284.78 | 286.25 | 288.89 | 292.44 | 56.58 |
TPU-HNTs-LiFSI-PE | 284.81 | 286.33 | 289.12 | - | 55.85 |
Fig. 3 a EIS curves of TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE at 30-90 ℃. b Temperature-dependent ionic conductivity for TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE. c, d Chronoamperometry profiles and AC impedance spectra of lithium symmetric cell with TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE before and after polarization
Fig. 4 a Voltage profiles of Lithium symmetric cells using TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE at a current density of 0.1 mA cm-2 with a restricted specific capacity of 0.1 mAh cm-2 at 60 ℃. b EIS curves, c Rsf and Rct variation of lithium symmetric cells using TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE after 100, 200, 300, 400, and 500 h
Fig. 5 XPS spectra of a, b C 1s, c, d F 1s, and e, f S 2p on the surface of lithium metal anode after cycling of lithium symmetric cells using TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE
Material | BE (eV) | |||||||
---|---|---|---|---|---|---|---|---|
C 1s | F 1s | S 2p | ||||||
C-C-O | C-O-CO2-Li | Li2CO3 | CF3 | LiF | R-SO3 | -SO2- | LixSOy | |
TPU-HNTs-LiTFSI-PE | 284.75 | 286.33 | 289.66 | 688.45 | 684.56 | - | 168.59 | - |
TPU-HNTs-LiFSI-PE | 284.81 | 286.27 | 288.96 | 687.39 | 684.51 | 170.48 | 169.31 | 166.46 |
Table 2 Binding energy of C 1s, F 1s, and S 2p on lithium metal anode after cycling of lithium symmetric cells using TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE
Material | BE (eV) | |||||||
---|---|---|---|---|---|---|---|---|
C 1s | F 1s | S 2p | ||||||
C-C-O | C-O-CO2-Li | Li2CO3 | CF3 | LiF | R-SO3 | -SO2- | LixSOy | |
TPU-HNTs-LiTFSI-PE | 284.75 | 286.33 | 289.66 | 688.45 | 684.56 | - | 168.59 | - |
TPU-HNTs-LiFSI-PE | 284.81 | 286.27 | 288.96 | 687.39 | 684.51 | 170.48 | 169.31 | 166.46 |
Fig. 6 CV curves of a NCM|TPU-HNTs-LiTFSI-PE|Li and b NCM|TPU-HNTs-LiFSI-PE|Li batteries at 3.0-4.5 V. c LSV curves of NCM|TPU-HNTs-LiTFSI-PE|Li and NCM|TPU-HNTs-LiFSI-PE|Li batteries at 3.0-6.0 V. d Initial charge-discharge curves of NCM|TPU-HNTs-LiTFSI-PE|Li and NCM|TPU-HNTs-LiFSI-PE|Li batteries at 60 ℃. Cycling performance of e NCM|TPU-HNTs-LiTFSI-PE|Li and f NCM|TPU-HNTs-LiFSI-PE|Li batteries at 60 ℃. Voltage profiles of h NCM|TPU-HNTs-LiTFSI-PE|Li and i NCM|TPU-HNTs-LiFSI-PE|Li batteries at 60 ℃
Fig. 7 a EIS curves of NCM|TPU-HNTs-LiTFSI-PE|Li and NCM|TPU-HNTs-LiFSI-PE|Li batteries after 100, 200, and 300 cycles. b Rsf and Rct variation of NCM|TPU-HNTs-LiTFSI-PE|Li and NCM|TPU-HNTs-LiFSI-PE|Li batteries after 100, 200, and 300 cycles
Fig. 8 XPS spectra of a, b C 1s, c, d F 1s, and e, f S 2p on the surface of lithium metal anode of NCM|TPU-HNTs-LiTFSI-PE|Li and NCM|TPU-HNTs-LiFSI-PE|Li batteries after cycling
Material | BE (eV) | |||||||
---|---|---|---|---|---|---|---|---|
C 1s | F 1s | S 2p | ||||||
C-C-O | -CO2-Li | Li2CO3 | CF3 | CF3 | LiF | R-SO3 | SO2CF3 | |
TPU-HNTs-LiTFSI-PE | 284.79 | 286.23 | 288.84 | 292.41 | 688.41 | - | 169.72 | 168.52 |
TPU-HNTs-LiFSI-PE | 284.80 | 286.34 | 289.09 | - | 687.49 | 684.81 | 170.73 | 169.55 |
Table 3 Binding energy of C 1s, F 1s, and S 2p on the surface of lithium metal anode in cycled NCM|TPU-HNTs-LiTFSI-PE|Li and NCM|TPU-HNTs-LiFSI-PE|Li batteries
Material | BE (eV) | |||||||
---|---|---|---|---|---|---|---|---|
C 1s | F 1s | S 2p | ||||||
C-C-O | -CO2-Li | Li2CO3 | CF3 | CF3 | LiF | R-SO3 | SO2CF3 | |
TPU-HNTs-LiTFSI-PE | 284.79 | 286.23 | 288.84 | 292.41 | 688.41 | - | 169.72 | 168.52 |
TPU-HNTs-LiFSI-PE | 284.80 | 286.34 | 289.09 | - | 687.49 | 684.81 | 170.73 | 169.55 |
Fig. 9 a, b Rate performance and c, d voltage profiles of NCM|TPU-HNTs-LiTFSI-PE|Li and NCM|TPU-HNTs-LiFSI-PE|Li batteries at various current densities at 60 ℃
[1] | X. Liu, W. Yang, Z. Liu, H. Fan, W. Zheng, Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01160-7 |
[2] | X. He, Y. Zhang, L. Yang, J. Zhao, H. Li, Y. Gao, B. Wang, X. Guo, Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01104-1 |
[3] | B. Ding, Z. Cai, Z. Ahsan, Y. Ma, S. Zhang, G. Song, C. Yuan, W. Yang, C. Wen, Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01095-z |
[4] | J.R. Nair, L. Imholt, G. Brunklaus, M. Winter, Electrochem. Soc. Interface 28, 55 (2019) |
[5] | J. Liang, J. Luo, Q. Sun, X. Yang, R. Li, X. Sun, Energy Storage Mater. 21, 308(2019) |
[6] |
S. Tan, X. Zeng, Q. Ma, X. Wu, Y. Guo, Electrochem. Energy Rev. 1, 113(2018)
DOI URL |
[7] | A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2, 16103(2017) |
[8] | M. Dirican, C. Yan, P. Zhu, X. Zhang, Mater. Sci. Eng. R 136, 27 (2019) |
[9] | C. Tao, M. Gao, B. Yin, B. Li, Y. Huang, G. Xu, J. Bao, Electrochim. Acta 257, 31 (2017) |
[10] | L. Liu, X. Wu, T. Li, J. Power Sour. 249, 397(2014) |
[11] | K. Ramanjaneyulu, N. Bar, M.S. Arif Sher Shah, S.V. Manorama, P. Basak, J. Power Sour. 217, 29(2012). |
[12] | T. Wen, Y. Du, M. Digar, Eur. Polym. J. 38, 1039(2002) |
[13] | S. Ibrahim, A. Ahmad, N. Mohamed, Polymers 7, 747 (2015) |
[14] |
S. Qian, H. Chen, Z. Wu, D. Li, X. Liu, Y. Tang, S. Zhang, Batteries Supercaps (2020). https://doi.org/10.1002/batt.202000149
URL PMID |
[15] |
C. Zhao, X. Zhang, X. Cheng, R. Zhang, R. Xu, P. Chen, H. Peng, J. Huang, Q. Zhang, Proc. Natl. Acad. Sci. 114, 11069(2017)
DOI URL PMID |
[16] | Q. Zhu, X. Wang, J.D. Miller, A.C.S. Appl, Mater. Interfaces 11, 8954 (2019) |
[17] | J. Tully, R. Yendluri, Y. Lvov, Biomacromol 17, 615 (2016) |
[18] | J. Gao, Q. Shao, J. Chen, J. Energy Chem. 46, 237(2020) |
[19] |
J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. Zhang, L. Zong, J. Wang, L. Chen, J. Qin, Y. Cui, Nat. Nanotechnol. 14, 705(2019)
DOI URL PMID |
[20] | G.G. Eshetu, T. Diemant, S. Grugeon, R.J. Behm, S. Laruelle, M. Armand, S. Passerini, A.C.S. Appl, Mater. Interfaces 8, 16087 (2016) |
[21] | R. Cao, J. Chen, K.S. Han, W. Xu, D. Mei, P. Bhattacharya, M.H. Engelhard, K.T. Mueller, J. Liu, J. Zhang, Adv. Funct. Mater. 26, 3059(2016) |
[22] | J. Wu, Z. Rao, Z. Cheng, L. Yuan, Z. Li, Y. Huang, Adv. Energy Mater. 9, 1902767(2019) |
[23] | Q. Ma, X.X. Zeng, J. Yue, Y.X. Yin, T.T. Zuo, J.Y. Liang, Q. Deng, X.W. Wu, Y.G. Guo, Adv. Energy Mater. 9, 1803854(2019) |
[24] |
J. Wu, L. Yuan, W. Zhang, Z. Li, X. Xie, Y. Huang, Energy Environ. Sci.(2020). https://doi.org/10.1039/D0EE02241A
URL PMID |
[25] | Z. Shen, H. Wen, H. Zhou, L. Hao, H. Chen, X. Zhou, Mater. Sci. Eng. C 105, 110073 (2019) |
[26] |
H.G. Buss, S.Y. Chan, N.A. Lynd, B.D. McCloskey, ACS Energy Lett. 2, 481(2017)
DOI URL |
[27] | Y. Zhang, W. Lu, L. Cong, J. Liu, L. Sun, A. Mauger, C.M. Julien, H. Xie, J. Liu, J. Power Sour. 420, 63(2019) |
[28] | S. Tang, Q. Lan, L. Xu, J. Liang, P. Lou, C. Liu, L. Mai, Y. Cao, S. Cheng, Nano Energy 71, 104600 (2020) |
[29] | C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D.G. Ivey, W. Wei, Adv. Sci. 5, 1700996(2018) |
[30] | S. Xiong, Y. Diao, X. Hong, Y. Chen, K. Xie, J. Electroanal. Chem. 719, 122(2014) |
[31] | G.H. Lane, A.S. Best, D.R. MacFarlane, M. Forsyth, A.F. Hollenkamp, Electrochim. Acta 55, 2210 (2010) |
[32] | G.H. Lane, P.M. Bayley, B.R. Clare, A.S. Best, D.R. MacFarlane, M. Forsyth, A.F. Hollenkamp, J. Phys. Chem. C 114, 21775 (2010) |
[33] | S. Xiong, K. Xie, Y. Diao, X. Hong, J. Power Sour. 236, 181(2013) |
[34] | G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang, F. Wang, Y. Liu, X. Xiong, Angew. Chem. Int. Ed. 59, 2055 (2020) |
[35] | K. Chen, R. Pathak, A. Gurung, E.A. Adhamash, B. Bahrami, Q. He, H. Qiao, A.L. Smirnova, J.J. Wu, Q. Qiao, Y. Zhou, Energy Storage Mater. 18, 389(2019) |
[36] |
N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, Adv. Mater. 28, 1853(2016)
URL PMID |
[37] | Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt, Y. Cui, Adv. Mater. 29, 1605531(2017) |
[38] | S. Choudhury, L.A. Archer, Adv. Electron. Mater. 2, 1500246(2016) |
[39] |
E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, Nat. Nanotechnol. 13, 337(2018)
DOI URL PMID |
[40] | A.M. Gaikwad, B.V. Khau, G. Davies, B. Hertzberg, D.A. Steingart, A.C. Arias, Adv. Energy Mater. 5, 1401389(2015) |
[41] |
R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, Q.Q. Qiao, Nat. Commun. 11, 93(2020)
DOI URL PMID |
[42] | G. Wan, F. Guo, H. Li, Y. Cao, X. Ai, J. Qian, Y. Li, H. Yang, A.C.S. Appl, Mater. Interfaces 10, 593 (2018) |
[43] | J. Yamaki, K.H. Shin-ichi Tobishima, K. Saito, M.A. Yasue Nemoto, J. Power Sour. 74, 219(1998). |
[44] |
M. Wang, Z. Peng, W. Luo, F. Ren, Z. Li, Q. Zhang, H. He, C. Ouyang, D. Wang, Adv. Energy Mater. 9, 1802912(2019)
DOI URL |
[45] | G. Yang, Y. Li, S. Liu, S. Zhang, Z. Wang, L. Chen, Energy Storage Mater. 23, 350(2019) |
[46] | X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Chemical 4, 174 (2018) |
[47] |
L. Suo, W. Xue, M. Gobet, S.G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, J. Li, Proc. Natl. Acad. Sci. USA 115, 1156 (2018)
DOI URL PMID |
[48] |
Q. Zhang, J. Pan, P. Lu, Z. Liu, M.W. Verbrugge, B.W. Sheldon, Y.T. Cheng, Y. Qi, X. Xiao, Nano Lett. 16, 2011 (2016)
URL PMID |
[49] | Z. Liu, Y. Qi, Y.X. Lin, L. Chen, P. Lu, L.Q. Chen, J. Electrochem. Soc. 163, A592(2016) |
[50] | X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin, Y. Shen, L. Li, C.W. Nan, Adv. Mater. 31, 1806082(2019) |
[51] |
P. Zhou, Z. Zhang, H. Meng, Y. Lu, J. Cao, F. Cheng, Z. Tao, J. Chen, Nanoscale 8, 19263 (2016)
DOI URL PMID |
[52] | S. Yang, Q. Fan, Z. Shi, L. Liu, J. Liu, X. Ke, J. Liu, C. Hong, Y. Yang, Z. Guo, A.C.S. Appl, Mater. Interfaces 11, 36742 (2019) |
[53] | L. Liu, X. Wang, C. Yang, P. Han, L. Zhang, L. Gao, Z. Wu, B. Liu, R. Liu, Acta Metall. Sin. Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01142-9 |
[54] | P. Han, Y. Zhu, J. Liu, J. Power Sour. 284, 459(2015) |
[55] | L. Zhang, G. Liang, G. Peng, F. Zou, Y. Huang, M.C. Croft, A. Ignatov, J. Phys. Chem. C 116, 12401 (2012) |
[56] | J. Zheng, W.H. Kan, A. Manthiram, A.C.S. Appl, Mater. Interfaces 7, 6926 (2015) |
[57] | D. Yoo, S. Yang, Y.S. Yun, J.H. Choi, D. Yoo, K.J. Kim, J.W. Choi, Adv. Energy Mater. 8, 1802365(2018) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||