Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (5): 675-693.DOI: 10.1007/s40195-020-01129-6
Previous Articles Next Articles
Fangsheng Mei1,2(), Tiechui Yuan1,2(
), Ruidi Li1, Jingwei Huang1
Received:
2020-04-22
Revised:
2020-05-29
Accepted:
2020-06-10
Online:
2021-05-10
Published:
2021-04-30
Contact:
Fangsheng Mei,Tiechui Yuan
About author:
Tiechui Yuan, tiechuiyuan@csu.edu.cnFangsheng Mei, Tiechui Yuan, Ruidi Li, Jingwei Huang. A Comparative Study on the Microstructure and Properties of ITO Targets and Thin Films Prepared from Two Different Powders[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 675-693.
Add to citation manager EndNote|Ris|BibTeX
Powder | Fe | Al | Si | Ni | Cu | Pb | Cr | Tl | Cd | Total |
---|---|---|---|---|---|---|---|---|---|---|
Tin-doped indium oxide | 4 | 5 | 10 | 5 | 2 | 2 | 1 | 2 | 2 | < 100 |
In2O3 | 5 | 3 | 8 | 5 | 2 | 2 | 1 | 2 | 2 | < 100 |
SnO2 | 25 | 20 | 15 | 7 | 8 | 5 | 5 | 2 | 2 | < 100 |
Table 1 Analyzed impurity compositions of the raw powders (ppm)
Powder | Fe | Al | Si | Ni | Cu | Pb | Cr | Tl | Cd | Total |
---|---|---|---|---|---|---|---|---|---|---|
Tin-doped indium oxide | 4 | 5 | 10 | 5 | 2 | 2 | 1 | 2 | 2 | < 100 |
In2O3 | 5 | 3 | 8 | 5 | 2 | 2 | 1 | 2 | 2 | < 100 |
SnO2 | 25 | 20 | 15 | 7 | 8 | 5 | 5 | 2 | 2 | < 100 |
Process | Parameters |
---|---|
Ball milling | (1) High energy planetary ball milling: a solid loading of 25.00 vol.% (70.40 wt%), 250 r/min for 3 h with zirconia balls and deionized water |
(2) Binder: 1.0 wt% PVA (Polyvinyl alcohol) | |
(3) Dispersant: 0.4 wt% NH4PAA (Ammonium polyacrylate) | |
Molding | Hydraulic molding with a forming pressure of 50 MPa and cold isostatic pressing with a forming pressure of 250 MPa |
Dewaxing | At 650 °C for 2 h in air |
Sintering | At 1580 °C for 10 h in an oxygen flow of 10 L/min |
Table 2 Detailed preparation parameters of ITO targets
Process | Parameters |
---|---|
Ball milling | (1) High energy planetary ball milling: a solid loading of 25.00 vol.% (70.40 wt%), 250 r/min for 3 h with zirconia balls and deionized water |
(2) Binder: 1.0 wt% PVA (Polyvinyl alcohol) | |
(3) Dispersant: 0.4 wt% NH4PAA (Ammonium polyacrylate) | |
Molding | Hydraulic molding with a forming pressure of 50 MPa and cold isostatic pressing with a forming pressure of 250 MPa |
Dewaxing | At 650 °C for 2 h in air |
Sintering | At 1580 °C for 10 h in an oxygen flow of 10 L/min |
Process | Parameters |
---|---|
Substrate temperature (°C) | 25 (room temperature) |
Sputtering gas | Ar |
Sputtering pressure (Pa) | 0.50 |
DC powder (W) | 60 (2.12 W/cm2) |
Sputtering time (min) | 5, 10, 20 |
Target-to-substrate distance (mm) | 153 |
Table 3 Detailed sputtering process parameters
Process | Parameters |
---|---|
Substrate temperature (°C) | 25 (room temperature) |
Sputtering gas | Ar |
Sputtering pressure (Pa) | 0.50 |
DC powder (W) | 60 (2.12 W/cm2) |
Sputtering time (min) | 5, 10, 20 |
Target-to-substrate distance (mm) | 153 |
Fig. 2 Microtopography (a1-c1 SEM; (a2-c2 TEM) of the raw powders: a1, a2, a3 In2O3; b1, b2, b3 SnO2; c1, c2, c3 10 wt% tin-doped indium oxide. a3-c3 HRTEM images corresponding to a2-c2, respectively. a4-c4 Selected area electron diffraction (SAED) patterns corresponding to a2-c2, respectively
Target | In | Sn | O | Other elements |
---|---|---|---|---|
mITO | 78.560 | 8.812 | 12.521 | Balance |
dITO | 75.867 | 8.679 | 15.362 | Balance |
Table 4 Elemental content (wt%) measured by XRF in the targets
Target | In | Sn | O | Other elements |
---|---|---|---|---|
mITO | 78.560 | 8.812 | 12.521 | Balance |
dITO | 75.867 | 8.679 | 15.362 | Balance |
Target | Fe | Al | Si | Ni | Cu | Pb | Cr | Na | Mg | Zr | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
mITO | 30 | 18 | 29 | 10 | 30 | 5 | 5 | 34 | 20 | 60 | < 1000 |
dITO | 36 | 19 | 20 | 12 | 28 | 5 | 5 | 48 | 14 | 25 | < 1000 |
Table 5 Analyzed impurity compositions (ppm) measured by ICP-AES in the targets
Target | Fe | Al | Si | Ni | Cu | Pb | Cr | Na | Mg | Zr | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
mITO | 30 | 18 | 29 | 10 | 30 | 5 | 5 | 34 | 20 | 60 | < 1000 |
dITO | 36 | 19 | 20 | 12 | 28 | 5 | 5 | 48 | 14 | 25 | < 1000 |
Fig. 3 XRD diffraction patterns a of ITO specimens prepared from In2O3-10 wt% SnO2 mixed (mITO) and 10 wt% tin-doped indium oxide (dITO) powders and the enlarged partial drawings b: 30°-31°. Inset in a is the diffraction peak intensities of crystal planes
Fig. 4 SEM images a, c of the fracture surface and grain morphology b, d after corrosion of ITO specimens prepared from In2O3-10 wt% SnO2 mixed (mITO: a, b) and 10 wt% tin-doped indium oxide (dITO: c, d) powders
Fig. 5 a Relative density, the average grain size, resistivity, b oxide content of ITO targets prepared from In2O3-10 wt% SnO2 mixed (mITO) and 10 wt% tin-doped indium oxide (dITO) powders
Fig. 6 Elemental distributions of In a, b, Sn c, d, O e, f of ITO specimens prepared from In2O3-10 wt% SnO2 mixed (mITO: a, c, e) and 10 wt% tin-doped indium oxide (dITO: b, d, f) powders
Spots | In | Sn | In/Sn | Spots | In | Sn | In/Sn |
---|---|---|---|---|---|---|---|
m-pt1 | 81.92 | 3.38 | 24.24 | d-pt1 | 75.78 | 7.37 | 10.28 |
m-pt2 | 83.67 | 2.31 | 36.22 | d-pt2 | 87.06 | 4.17 | 20.88 |
m-pt3 | 50.93 | 33.06 | 1.54 | d-pt3 | 59.40 | 30.68 | 1.94 |
Table 6 In and Sn exploration spots results (wt%) in Fig. 2(e, f) by EDX
Spots | In | Sn | In/Sn | Spots | In | Sn | In/Sn |
---|---|---|---|---|---|---|---|
m-pt1 | 81.92 | 3.38 | 24.24 | d-pt1 | 75.78 | 7.37 | 10.28 |
m-pt2 | 83.67 | 2.31 | 36.22 | d-pt2 | 87.06 | 4.17 | 20.88 |
m-pt3 | 50.93 | 33.06 | 1.54 | d-pt3 | 59.40 | 30.68 | 1.94 |
Fig. 7 Microstructure and EDX maps of the coarse grain in mITO target characterized by TEM in the cross section: a grain structure in the target; b highly magnified TEM images of the coarse grain (red frame in a); c selected area electron diffraction (SAED) patterns of (b); d HRTEM image obtained from the dark particle (blue frame in b); e, f energy-dispersive X-ray (EDX) composition maps corresponding to b
Element | mITO | dITO | ||||
---|---|---|---|---|---|---|
5 min | 10 min | 20 min | 5 min | 10 min | 20 min | |
In | 73.46 | 75.52 | 80.40 | 70.05 | 72.97 | 81.94 |
Sn | 7.30 | 7.49 | 6.61 | 8.28 | 7.83 | 5.97 |
O | 18.44 | 16.26 | 12.80 | 20.84 | 18.68 | 12.09 |
C | 0.80 | 0.73 | 0.19 | 0.83 | 0.52 | 0 |
Table 7 Measured content of elements in ITO films (wt%)
Element | mITO | dITO | ||||
---|---|---|---|---|---|---|
5 min | 10 min | 20 min | 5 min | 10 min | 20 min | |
In | 73.46 | 75.52 | 80.40 | 70.05 | 72.97 | 81.94 |
Sn | 7.30 | 7.49 | 6.61 | 8.28 | 7.83 | 5.97 |
O | 18.44 | 16.26 | 12.80 | 20.84 | 18.68 | 12.09 |
C | 0.80 | 0.73 | 0.19 | 0.83 | 0.52 | 0 |
Items | mITO | dITO | |||||
---|---|---|---|---|---|---|---|
5 min | 10 min | 20 min | 5 min | 10 min | 20 min | ||
Diffraction angle position (°2Th.) | (222) | - | 30.12 | 30.12 | - | 29.68 | 29.68 |
(400) | - | 35.00 | 35.00 | - | 34.76 | 34.76 | |
I(222)/I(400) | - | 1.115 | 0.892 | - | 0.781 | 0.611 | |
Average crystalline size (nm) | - | 37 | 27 | - | 37 | 34 |
Table 8 Diffraction angle positions of (222) and (400), I(222)/I(400) and the average grain size of ITO films deposited for different time
Items | mITO | dITO | |||||
---|---|---|---|---|---|---|---|
5 min | 10 min | 20 min | 5 min | 10 min | 20 min | ||
Diffraction angle position (°2Th.) | (222) | - | 30.12 | 30.12 | - | 29.68 | 29.68 |
(400) | - | 35.00 | 35.00 | - | 34.76 | 34.76 | |
I(222)/I(400) | - | 1.115 | 0.892 | - | 0.781 | 0.611 | |
Average crystalline size (nm) | - | 37 | 27 | - | 37 | 34 |
Fig. 10 SEM images of surface morphology of ITO films deposited for different time (a, b 5 min; c, d 10 min; e, f 20 min) using different targets a, c, e mITO; b, d, f dITO). Insets are the AFM images
Fig. 11 SEM images of cross-sectional morphology of ITO films deposited for different time (a, b 5 min; c, d 10 min; e, f 20 min) using different targets (a, c, e mITO; b, d, f dITO)
Fig. 13 Surface morphology of ITO targets (a mITO; b dITO) after sputtering. Cracks, nodules and pores are marked by white dotted lines, red dotted lines and white arrows, respectivelyAs a whole, the targets with different microstructure and properties would affect the crystalline structure, grain growth and morphology of the films as well as the photoelectric and etching properties.
Fig. 14 a Sheet resistance, c carrier concentration and Hall mobility, d sheet carrier density of ITO films deposited for different time. b Schematic diagram of electron transmission paths in ITO films with different crystal growth directions of thin films
Fig. 15 a-c Transmittance at a wavelength of 300-800 nm and d the plots of (αhv)2 versus hv of ITO films deposited for different time (a 5 min; b 10 min; c 20 min). Inset in c is the schematic diagram of photon paths passing through ITO films with different crystal growth directions of thin films
Fig. 17 EDX spectra after etching of ITO films deposited for 5 min a, b mITO; c, d dITO. a, c Corresponding to point 1, and b, d corresponding to point 2 in Fig. 16a, c
[1] |
F. Mei, T. Yuan, R. Li, K. Qin, L. Zhou, W. Wang, J. Eur. Ceram. Soc. 38, 521 (2018)
DOI URL |
[2] |
Y. Yang, Q. Huang, A.W. Metz, J. Ni, Adv. Mater. 16, 321 (2004)
DOI URL |
[3] |
M.H. Ahn, E. Cho, S.J. Kwon, Appl. Surf. Sci. 258, 1242 (2011)
DOI URL |
[4] |
S. Besbes, H.B. Ouada, J. Davenas, L. Ponsonnet, N. Jaffrezic, P. Alcouffe, Mater. Sci. Eng. C 26, 505 (2006)
DOI URL |
[5] |
L.K. Wang, J.J. Chen, J.Y. Yu, H.L. Zhao, J.K. Yang, Vacuum 169, 108879 (2019)
DOI URL |
[6] |
O. Rasoga, L. Vacareanu, M. Grigoras, M. Enculescu, M. Socol, F. Stanculescu, I. Ionita, A. Stanculescu, Synth. Met. 161, 2612 (2012)
DOI URL |
[7] |
J.S. Oyola, J.M. Castro, G. Gordillo, Sol. Energ. Mat. Sol. C 102, 137 (2012)
DOI URL |
[8] |
K. Utsumi, H. Iigusa, R. Tokumaru, P.K. Song, Y. Shigesato, Thin Solid Films 445, 229 (2003)
DOI URL |
[9] |
Z. Jiao, M. Wu, J. Gu, X. Sun, Sensor. Actuat. B-Chem. 94, 216 (2003)
DOI URL |
[10] |
H.J. Kim, M.J. Maeng, J.H. Park, M.G. Kang, C.Y. Kang, Y. Park, Y.J. Chang, Curr. Appl. Phys. 19, 168 (2019)
DOI URL |
[11] |
F. Mei, T. Yuan, R. Li, Ceram. Int. 43, 8866 (2017)
DOI URL |
[12] | K. Eshima, K. Toishi, K. Okabe. T. Nishimura, S. Shinji, N. Choju, U.S. Patent 6, 121,178, 19 Sept 2000 |
[13] |
E. Medvedovski, N. Alvarez, O. Yankov, M.K. Olsson, Ceram. Int. 34, 1173 (2008)
DOI URL |
[14] | X. Ma, W. Zhang, D. Wang, B. Sun, J. Zhong, Rare Met. Mater. Eng. 12, 2937 (2015) |
[15] |
T.O.L. Sunde, M.A. Einarsrud, T. Grande, J. Eur. Ceram. Soc. 33, 565 (2013)
DOI URL |
[16] |
B.C. Kim, J.H. Lee, J.J. Kim, H.Y. Lee, J.S. Lee, Mater. Res. Bull. 40, 395 (2005)
DOI URL |
[17] |
G. Zhu, Z. Yang, L. Zhi, H. Yang, H. Xu, A. Yu, J. Am. Ceram. Soc. 93, 2511 (2010)
DOI URL |
[18] |
J. Xu, Z. Yang, X. Zhang, H. Wang, H. Xu, J. Mater. Sci. Mater. Electron. 25, 710 (2014)
DOI URL |
[19] | J.G. Nam, H. Choi, S.H. Kim, K.H. Song, S.C. Park, Scr. Mater. 44(2047), 19 (2001) |
[20] |
F. Liang, J. Liu, Ceram. Int. 43, 5856 (2017)
DOI URL |
[21] |
S.M. Kim, J.H. Lee, J.J. Kim, Scr. Mater. 56, 293 (2007)
DOI URL |
[22] |
F. Mei, T. Yuan, R. Li, K. Qin, W. Zhao, S. Jiang, Ceram. Int. 44, 7491 (2018)
DOI URL |
[23] |
K. Nakashima, Y. Kumahara, Vacuum 66, 221 (2002)
DOI URL |
[24] |
K. Utsumi, O. Matsunaga, T. Takahata, Thin Solid Films 334, 30 (1998)
DOI URL |
[25] |
K. Wang, X. Gan, Z. Li, D. Zhang, K. Zhou, Ceram. Int. 40, 12623 (2014)
DOI URL |
[26] |
B.L. Gehman, S. Jonson, T. Rudolph, M. Scherer, M. Weigert, R. Werner, Thin Solid Films 220, 333 (1992)
DOI URL |
[27] |
F. Mei, T. Yuan, R. Li, K. Qin, J. Huang, Scr. Mater. 155, 109 (2018)
DOI URL |
[28] |
S.M. Kim, K.H. Seo, J.H. Lee, J.J. Kim, H.Y. Lee, J.S. Lee, J. Eur. Ceram. Soc. 26, 73 (2006)
DOI URL |
[29] |
T. Omata, M. Kita, H. Okada, S.O.Y. Matsuo, N. Ono, H. Ikawa, Thin Solid Films 503, 22 (2006)
DOI URL |
[30] |
F. Mei, T. Yuan, A. Chu, R. Li, J. Eur. Ceram. Soc. 39, 4806 (2019)
DOI URL |
[31] |
G. Greczynsky, L. Hultman, Prog. Mater Sci. 107, 100591 (2020)
DOI URL |
[32] |
G.B. Gonzalez, T.O. Mason, J.S. Okasinski, T. Buslaps, V. Honkimaki, J. Am. Ceram. Soc. 95, 809 (2012)
DOI URL |
[33] | K. Matsumae, S. Takahashi, B.G. Lin, J.P. Patent, 204,639, 6 Aug 6 Aug 2007 |
[34] |
W.J. Heward, D.J. Swenson, J. Mater. Sci. 42, 7135 (2007)
DOI URL |
[35] |
F. Mei, T. Yuan, R. Li, K. Qin, J. Mater. Sci. Mater. Electron. 28, 15996 (2017)
DOI URL |
[36] |
S. Yang, B. Sun, Y. Liu, J. Zhu, J. Song, Z. Hao, X. Zeng, X. Zhao, Y. Shu, J. Chen, J. Yi, J. He, Ceram. Int. 46, 6342 (2020)
DOI URL |
[37] | A.S. Kuzmina, A.A. Lotin, N.A. Strokin, M.P. Kuz’min, A.V. Kazantsev, J. Cryst. Growth 535, 125506 (2020) |
[38] |
L. Jin, K. Jia, Y. He, G. Wang, Z. Zhong, H. Zhang, Appl. Surf. Sci. 483, 947 (2019)
DOI URL |
[39] |
V. Senthilkumar, K. Senthil, P. Vickraman, Mater. Res. Bull. 47, 1051 (2012)
DOI URL |
[40] |
G.H. Wang, C.Y. Shi, L. Zhao, H.W. Diao, Appl. Surf. Sci. 399, 716 (2017)
DOI URL |
[41] |
F. Mei, J. Huang, T. Yuan, R. Li, Appl. Surf. Sci. 509, 144810 (2020)
DOI URL |
[42] |
F. Mei, K. Qin, T. Yuan, R. Li, L. Liu, L. Chen, W. Zhao, J. Mater. Sci.: Mater. Electron. 28, 14711 (2017)
DOI URL |
[43] | M.A. Lieberman (ed.) and A.J. Lichtenberg (ed.), Principles of plasma discharges and materials processing (Wiley, New Jersey,, 2005) |
[44] |
Z. Chen, Y. Zhuo, W. Tu, Z. Li, Opt. Express. 26, 22123 (2018)
DOI URL |
[45] |
J. Shi, F. Meng, J. Bao, Y. Liu, Z. Liu, Mater. Lett. 225, 54 (2018)
DOI URL |
[46] |
A. Valla, P. Carroy, F. Ozanne, D. Munoz, Sol. Energ. Mat. Sol. C 157, 874 (2016)
DOI URL |
[47] | S.M. Chung, J.H. Shin, W.S. Cheong, C.S. Hwang, K.I. Cho, Y.J. Kim, Ceram. Int. 38S, 617 (2012) |
[48] |
J.A.B. Perez, M. Courel, R.C. Valderrama, I. Hernandez, M. Pal, F.P. Delgado, N.R. Mathews, Vacuum 169, 108873 (2019)
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||