Please wait a minute...
Acta Metallurgica Sinica (English Letters)  2019, Vol. 32 Issue (12): 1483-1489    DOI: 10.1007/s40195-019-00902-6
Orginal Article Current Issue | Archive | Adv Search |
Stern-Geary Constant for X80 Pipeline Steel in the Presence of Different Corrosive Microorganisms
Yu-Peng Sun1, Chun-Tian Yang2, Chun-Guang Yang3, Da-Ke Xu2(), Qi Li1(), Lu Yin3, Cheng-Shuo Qiu2, Dan liu2, Ke Yang3
1 College of Chemistry, Liaoning University,Shenyang 110036, China
2 Shenyang National Laboratory for Material Sciences, Northeastern University, Shenyang 110819, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Stern-Geary constant (B value) is indispensable to measure the corrosion rate in the microbiologically influenced corrosion (MIC) systems. Linear polarization resistance (LPR) and weight loss methods were used to study the variation of B values for X80 pipeline steel in the presence of Pseudomonas aeruginosa, Acetobacter aceti and Desulfovibrio vulgaris. The results showed that B values in the presence of three different bacteria were 35.60 ± 0.55 mV, 33.00 ± 1.00 mV and 58.60 ± 0.55 mV, respectively, suggesting that the change of corrosion system significantly affected the B values of X80 pipeline steel. This work further indicated that the determination of B values is necessary to accurately measure the MIC rate by LPR method.

Key words:  X80 pipeline steel      Stern-Geary constant      Corrosion rate      Microbiologically influenced corrosion      Biofilm     
Received:  30 January 2019     

Cite this article: 

Yu-Peng Sun, Chun-Tian Yang, Chun-Guang Yang, Da-Ke Xu, Qi Li, Lu Yin, Cheng-Shuo Qiu, Dan liu, Ke Yang. Stern-Geary Constant for X80 Pipeline Steel in the Presence of Different Corrosive Microorganisms. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1483-1489.

URL: 

https://www.amse.org.cn/EN/10.1007/s40195-019-00902-6     OR     https://www.amse.org.cn/EN/Y2019/V32/I12/1483

C Si Mn Mo Ni Cu Cr V P S Fe
0.03 0.28 1.90 0.22 0.29 0.20 0.08 0.03 0.03 0.01 Bal.
Table 1  Chemical composition of X80 pipeline steel
Fig. 1  SEM images of X80 pipeline steel coupon surface in the presence of three bacteria for 7 days: aP. aeruginosa, bA. aceti, cD. vulgaris and 14 days: dP. aeruginosa, eA. aceti, fD. vulgaris. The insets are taken at ×600 for biofilm
Fig. 2  EDS results of coupons in different culture media after 14 days: a bare X80 pipeline steel coupon surface, bP. aeruginosa biofilm, cA. aceti biofilm, dD. vulgaris biofilm
C N O P S Cr Mn Fe
a 14.43 2.00 0.64 - 0.02 0.12 1.73 81.16
b 39.29 - 37.67 3.72 0.12 0.02 0.32 18.86
c 43.71 2.08 36.33 2.94 0.24 0.09 0.38 14.23
d 73.00 - 21.56 0.22 2.77 - 0.01 2.44
Table 2  Chemical composition (at.%) of biofilms on the coupon surfaces after 14 days determined by EDS: a bare X80 pipeline steel coupon surface, bP. aeruginosa biofilm, cA. aceti biofilm, dD. vulgaris biofilm
Fig. 3  Largest pit depth measured by CLSM on the coupon surface of X80 pipeline steel in the presence of three bacteria for 14 days: aP. aeruginosa, bA. aceti, cD. vulgaris
Pit depth P. aeruginosa broth A. aceti broth D. vulgaris broth
Largest pit depth (μm) 6.9 7.4 7.8
Average pit depth (μm) 5.6 ± 1.1 6.3 ± 1.3 7.1 ± 0.9
Table 3  Pit depths of X80 pipeline steel coupons incubated in the presence of different bacteria for 14 days
Fig. 4  Potentiodynamic polarization curves of X80 pipeline steel coupons in the presence of different bacteria for 1, 4, 7, 10 and 14 days: aP. aeruginosa, bA. aceti, cD. vulgaris
Bacteria Time (day) EOCP (V) versus SCE RP (kΩ cm-2) βa (V dec-1) βc (V dec-1) B (mV) B′ (mV) icorr (μA cm-2)
P. aeruginosa 1 - 0.68 ± 0.01 54.64 ± 4.50 0.21 ± 0.01 - 0.13 ± 0.01 35.11 ± 1.12 35.60 ± 0.55 0.64 ± 0.02
4 - 0.69 ± 0.04 54.35 ± 9.65 0.24 ± 0.04 - 0.13 ± 0.03 36.18 ± 4.71 0.67 ± 0.09
7 - 0.66 ± 0.02 61.20 ± 13.08 0.26 ± 0.05 - 0.12 ± 0.01 35.45 ± 2.34 0.58 ± 0.04
10 - 0.64 ± 0.03 66.44 ± 12.58 0.22 ± 0.02 - 0.13 ± 0.02 34.71 ± 1.55 0.52 ± 0.02
14 - 0.67 ± 0.01 69.66 ± 8.54 0.27 ± 0.01 - 0.12 ± 0.01 36.33 ± 1.01 0.52 ± 0.01
A. aceti 1 - 0.64 ± 0.01 4.06 ± 1.51 0.12 ± 0.01 - 0.20 ± 0.02 32.39 ± 1.45 33.00± 1.00 7.98 ± 0.36
4 - 0.66 ± 0.01 14.66 ± 1.47 0.19 ± 0.02 - 0.12 ± 0.05 32.39 ± 1.55 2.21 ± 0.11
7 - 0.65 ± 0.02 14.84 ± 2.21 0.23 ± 0.02 - 0.12 ± 0.01 33.21 ± 1.23 2.24 ± 0.08
10 - 0.62 ± 0.05 18.27 ± 2.87 0.23 ± 0.01 - 0.12 ± 0.02 34.31 ± 0.23 1.88 ± 0.01
14 - 0.63 ± 0.01 15.02 ± 1.60 0.26 ± 0.01 - 0.11 ± 0.01 33.63 ± 1.81 2.24 ± 0.12
D. vulgaris 1 - 0.60 ± 0.04 0.21 ± 0.08 0.27 ± 0.01 - 0.27 ± 0.01 52.96 ± 1.36 58.60 ± 0.55 279.42 ± 6.23
4 - 0.58 ± 0.02 0.16 ± 0.06 0.27 ± 0.01 - 0.28 ± 0.01 59.22 ± 0.95 370.16 ± 5.88
7 - 0.56 ± 0.01 0.14 ± 0.01 0.26 ± 0.02 - 0.27 ± 0.02 58.18 ± 1.87 420.13 ± 13.33
10 - 0.58 ± 0.01 0.18 ± 0.02 0.27 ± 0.01 - 0.27 ± 0.02 58.27 ± 0.21 323.71 ± 1.31
14 - 0.55 ± 0.01 0.16 ± 0.07 0.27 ± 0.02 - 0.27 ± 0.01 58.68 ± 0.64 366.74 ± 3.78
Table 4  Corrosion parameters extracted from LPR and polarization curves of X80 pipeline steel in the presence of three bacteria for different times
Bacteria Time (day) Weight loss (mg cm-2) VC (μm year-1) icorr (μA cm-2)
P. aeruginosa 7 0.28 ± 0.02 18.60 ± 1.33 1.78 ± 0.10
14 0.45 ± 0.02 14.95 ± 0.07 1.43 ± 0.07
A. aceti 7 0.47 ± 0.04 31.22 ± 2.78 2.99 ± 0.22
14 0.74 ± 0.03 24.58 ± 1.21 2.35 ± 0.10
D. vulgaris 7 1.63 ± 0.16 108.28 ± 13.18 10.37 ± 0.75
14 2.88 ± 0.10 95.68 ± 4.23 9.16 ± 0.33
Table 5  Weight loss of X80 pipeline steel incubating with three bacteria for 7 days and 14 days, respectively
[1] X. Chang, S. Chen, G. Gao, Y. Yin, S. Cheng, T. Liu, Acta Metall. Sin. (Engl. Lett.) 22, 313(2009)
[2] X. Chang, Y. Yin, G. Niu, T. Liu, S. Cheng, S. Sun, Acta Metall. Sin. (Engl. Lett.) 20, 334(2007)
[3] E. Ilhan-Sungur, A. ?otuk, Corros. Sci. 52, 161(2010)
[4] Z. Liu, X. Li, Y. Zhang, C. Du, G. Zhai, Acta Metall. Sin. (Engl. Lett.) 22, 58(2009)
[5] F. Alabbas, C. Williamson, S. Bhola, J. Spear, D. Olson, B. Mishra, A.E. Kakpovbia, Int. Biodeterior. Biodegrad. 78, 34(2013)
[6] X. Li, D. Zhang, Z. Liu, Z. Li, C. Du, C. Dong, Nature 527, 441 (2015)
[7] D. Walsh, D. Pope, M. Danford, T. Huff. 45, 22(1993)
[8] G.A. Jacobson, Mater. Perform. 46, 26(2007)
[9] Y. Zou, J. Wang, Y.Y. Zheng, Corros. Sci. 53, 208(2011)
[10] B.J. Little, J.S. Lee, Int. Mater. Rev. 59, 384(2014)
[11] C. Andrade, J.A. González, Werkst. Korros. 29, 515(1978)
[12] S. Ahmad, B. Bhattacharjee, Corros. Sci. 37, 781(1995)
[13] S. Feliu, J.A. González, J.M. Miranda, V. Feliu, Corros. Sci. 47, 217(2005)
[14] J. Xu, L. Jiang, J. Wang, Constr. Build. Mater. 23, 1902 (2009)
[15] T. Zafeiropoulou, E. Rakanta, G. Batis, Prog. Org. Coat. 72, 175(2011)
[16] L.B. Boinovich, S.V. Gnedenkov, D.A. Alpysbaeva, V.S. Egorkin, A.M. Emelyanenko, S.L. Sinebryukhov, A.K. Zaretskaya, Corros. Sci. 55, 238(2012)
[17] J. Xu, L. Jiang, W. Wang, L. Tang, L. Cui, Sci. Technol. 6, 354(2013)
[18] S. Fajardo, A. Sanchez-Deza, M. Criado, A. La Iglesia, J.M. Bastidas, Electrochem. Soc. 161, 3158(2014)
[19] F. Cao, J. Wei, J. Dong, W. Ke, Corros. Sci. 100, 365(2015)
[20] J. Xia, C. Yang, D. Xu, D. Sun, L. Nan, Z. Sun, Q. Li, T. Gu, K. Yang, Biofouling 31, 481 (2015)
[21] A. Bautista, E.C. Paredes, S.M. Alvarez, F. Velasco, Corros. Sci. 102, 363(2016)
[22] G. Liu, Y. Zhang, Z. Ni, R. Huang, Constr. Build. Mater. 115, 1(2016)
[23] A. Michel, M. Otieno, H. Stang, M.R. Geiker, Cem. Concr. Compos. 70, 171(2016)
[24] S.K. Prasad, M. Kundu, V. Kumar, IJSRD 4, 165 (2016)
[25] S. Mundra, M. Criado, S.A. Bernal, J.L. Provis, Cem. Concr. Res. 100, 385(2017)
[26] W. Li, B.F.M. Pots, X. Zhong, S. Nesic, Corros. Sci. 126, 208(2017)
[27] R. Vedalakshmi, S. Manoharan, H. Song, N. Palaniswamy, Corros. Sci. 51, 2777(2009)
[28] A. Poursaee, Cem. Concr. Res. 40, 1451(2010)
[29] D. Xu, E. Zhou, Y. Zhao, H. Li, Z. Liu, D. Zhang, C. Yang, H. Lin, X. Li, K. Yang, J. Mater. Sci. Technol. 34, 1325(2018)
[30] Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu, F. Wang, Electrochem. Commun. 94, 9(2018)
[31] Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, J. Mater. Sci. Technol. 34, 1713(2018)
[32] R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegrad. 137, 42(2019)
[33] Y. Dong, B. Jiang, D. Xu, C. Jiang, Q. Li, T. Gu, Bioelectrochemistry 123, 34 (2018)
[34] T. Gu, R. Jia, T. Unsal, D. Xu, J. Mater. Sci. Technol. 35, 631(2019)
[35] R. Jia, J. Tan, P. Jin, D.J. Blackwood, D. Xu, T. Gu, Corros. Sci. 130, 1(2018)
[36] E. Zhou, H. Li, C. Yang, J. Wang, D. Xu, D. Zhang, T. Gu, Int. Biodeterior. Biodegrad. 127, 1(2018)
[37] D. Xu, J. Xia, E. Zhou, D. Zhang, H. Li, C. Yang, Q. Li, H. Lin, X. Li, K. Yang, Bioelectrochemistry 113, 1 (2017)
[38] Y. Lou, L. Lin, D. Xu, S. Zhao, C. Yang, J. Liu, Y. Zhao, T. Gu, K. Yang, Int. Biodeterior. Biodegrad. 110, 199(2016)
[39] H. Li, C. Yang, E. Zhou, C. Yang, H. Feng, Z. Jiang, D. Xu, T. Gu, K. Yang, J. Mater. Sci. Technol. 33, 1596(2017)
[40] J.W. Sowards, C.H.D. Williamson, T.S. Weeks, J.D. McColskey, J.R. Spear, Corros. Sci. 79, 128(2014)
[41] Y. Zhao, E. Zhou, Y. Liu, S. Liao, Z. Li, D. Xu, T. Zhang, T. Gu, Corros. Sci. 126, 142(2017)
[42] R. Keller, D. Berge, N. Nouwen, M. Snel, J. Tommassen, D. Marsh, B. Kruijff, Bioelectrochemistry 35, 3063 (1996)
[43] X. Sheng, Y.P. Ting, S.O. Pehkonen, Corros. Sci. 49, 2159 (2007)
[44] S.J. Yuan, A.M.F. Choong, S.O. Pehkonen, Corros. Sci. 49, 4352(2007)
[45] S.J. Yuan, S.O. Pehkonen, Corros. Sci. 51, 1372(2009)
[46] D. Cetin, M.L. Aksu, Corros. Sci. 51, 1584(2009)
[47] Q. Bao, D. Zhang, D. Lv, P. Wang, Corros. Sci. 65, 405(2012)
[48] N.O. San, H. Naz?r, G. D?nmez, Corros. Sci. 64, 198(2012)
[49] N.O. San, H. Naz?r, G. D?nmez, Corros. Sci. 65, 113(2012)
[50] Q. Qu, Y. He, L. Wang, H. Xu, L. Li, Y. Chen, Z. Ding, Corros. Sci. 91, 321(2015)
[51] L. Abdoli, J. Huang, H. Li, Mater. Chem. Phys. 173, 62(2016)
[52] R. Jia, D. Yang, D. Xu, T. Gu, Bioelectrochemistry 118, 38 (2017)
[53] F. Guan, X. Zhai, J. Duan, J. Zhang, K. Li, B. Hou, Surf. Coat. Technol. 316, 171(2017)
[54] J. Xu, T.T. Sun, S. Jiang, P. Munroe, Z.H. Xie, Appl. Surf. Sci. 447, 500(2018)
[55] F. Batmanghelich, L. Li, Y. Seo, Corros. Sci. 121, 94(2017)
[56] H. Li, E. Zhou, Y. Ren, D. Zhang, D. Xu, C. Yang, H. Feng, Z. Jiang, X. Li, T. Gu, K. Yang, Corros. Sci. 111, 811(2016)
[57] N.O. San, H. Naz?r, G. D?nmez, Corros. Sci. 79, 177(2014)
[58] R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci. 127, 1(2017)
[59] L.L. Machuca, K. Lepkova, A. Petroski, Corros. Sci. 129, 16(2017)
[60] H. Liu, Y.F. Cheng, Electrochimica Acta. 253, 368(2017)
[61] S. Yuan, B. Liang, Y. Zhao, S.O. Pehkonen, Corros. Sci. 74, 353(2013)
[1] Yan Dai, Xian-Hua Chen, Tao Yan, Ai-Tao Tang, Di Zhao, Zhu Luo, Chun-Quan Liu, Ren-Ju Cheng, Fu-Sheng Pan. Improved Corrosion Resistance in AZ61 Magnesium Alloys Induced by Impurity Reduction[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 225-232.
[2] Canshuai Liu, Jianqiu Wang, Zhiming Zhang, En-Hou Han, Wei Liu, Dong Liang, Zhongtian Yang. Characterization of Corrosion Behavior of Irradiated X65 Low Carbon Steel in Aerobic and Unsaturated Gaomiaozi Bentonite[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 506-516.
[3] M. Saleem Khan, Dake Xu, Dan Liu, Yassir Lekbach, Ke Yang, Chunguang Yang. Corrosion Inhibition of X80 Steel in Simulated Marine Environment with Marinobacter aquaeolei[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1373-1384.
[4] Xiao-Yang Wei, Masoumeh Moradi, Li-Jing Yang, Zhen-Lun Song, Bi-Zhang Zheng, Zhan-Peng Lu. Influence of Static Low Electromagnetic Field on Copper Corrosion in the Presence of Multispecies Aerobic Bacteria[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1287-1297.
[5] Ruo-Yu Liu, Ran-Gan He, Li-Qun Xu, Sheng-Feng Guo. Design of Fe-Mn-Ag Alloys as Potential Candidates for Biodegradable Metals[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(6): 584-590.
[6] Hong-Wei Liu, Da-Ke Xu, Bi-Juan Zheng, Muhammad Asif, Fu-Ping Xiong, Guo-An Zhang, Hong-Fang Liu. A Synergistic Acceleration of Corrosion of Q235 Carbon Steel Between Magnetization and Extracellular Polymeric Substances[J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 456-464.
[7] Xu-Dong Li, Cheng-Ning Li, Guo Yuan, Guo-Dong Wang. Effects of Cooling Paths on Through-Thickness Microstructure and Mechanical Properties of Heavy Gauge X80 Pipeline Steel[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(5): 483-492.
[8] Yanyan Song, Hongwei Shi, Jun Wang, Fuchun Liu, En-Hou Han, Wei Ke, Ganxin Jie, Jun Wang, Haijun Huang. Corrosion Behavior of Cupronickel Alloy in Simulated Seawater in the Presence of Sulfate-Reducing Bacteria[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1201-1209.
[9] Huang Zhenyi, Shi Qi, Chen Fuqiang, Shi Yunfeng. FEM Simulation of the Hydrogen Diffusion in X80 Pipeline Steel During Stacking for Slow Cooling[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 416-421.
[10] Xueting CHANG,Shougang CHEN,Guanhui GAO,Yansheng YIN,Sha CHENG,Tao LIU. Electrochemical behavior of microbiologically influenced corrosion on Fe3Al in marine environment[J]. Acta Metallurgica Sinica (English Letters), 2009, 22(4): 313-320.
[11] X. Cao. Effect of Chloride on the Atmospheric Corrosion of Simulated Artifact Iron in Nitrogenous[J]. Acta Metallurgica Sinica (English Letters), 2006, 19(1): 34-42 .
[12] S. Abubakir;Y.S. Wu; T.C. Zhang; Z. Yang and Z. Zhang (Department of Surface Science & Corrosion Engineering, University of Science and Technology Beijing,Beijing 100083, China)(Department of Materials Science and Engineering, Northeastern University, Shenyang 110006, China). STUDY ON THE CORROSION AND MECHANICAL PROPERTIES OF FJ316 STAINLESS STEEL-GLASS COMPOSITE[J]. Acta Metallurgica Sinica (English Letters), 1998, 11(3): 175-182.
No Suggested Reading articles found!
ISSN: 1005-0302
CN: 21-1315/TG
Home
About AMSE
Privacy Statement
Terms & Conditions
Editorial Office: Acta Metallurgica Sinica(English Letters), 72 Wenhua Rd.,
Shenyang 110016, China
Tel: +86-024-83978879
E-mail:ams@imr.ac.cn

Copyright © 2016 AMSE, All Rights Reserved.