Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (1): 98-106.DOI: 10.1007/s40195-018-0855-9
• Orginal Article • Previous Articles Next Articles
Yuan-Yuan Yang1, Yuan-Yuan Liu1, Man-Lang Cheng1, Nian-Wei Dai1, Min Sun1, Jin Li1, Yi-Ming Jiang1()
Received:
2018-10-09
Revised:
2018-10-30
Online:
2019-01-10
Published:
2019-01-18
Contact:
Jiang Yi-Ming
About author:
Author brief introduction:Dao-Kui Xu Professor of IMR, CAS, and “Young Merit Scholar” of Corrosion Center in the Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS). He achieved Ph.D. degree from IMR, CAS, in 2008, during which he obtained “Chinese Academy of Sciences-BHP Billiton” Scholarship award, “Shi Changxu” Scholarship award and “Zhu-LiYueHua” Excellent Doctorate Student Scholarship of Chinese Academy of Sciences. He worked as a Research Fellow in ARC Center of Excellence, Design of Light Metals, Department of Materials Engineering, Monash University, Australia (2008.10-2011.10). He published more than 60 peer-reviewed scientific papers, attended 20 invited lectures and holds seven patents. His papers were cited more than 1200 times. His research interests mainly include: (1) fatigue behavior and fracture toughness of light metals, such as Mg, Al and Ti alloys; (2) effects of alloying, heat treatment and thermomechanical processes on the microstructural evolution and mechanical improvement of light metals; (3) corrosion, stress corrosion cracking and corrosion fatigue behavior of lightweight alloys; and (4) design of new lightweight alloys with a good balance of properties in terms of mechanical property and corrosion resistance.
Yuan-Yuan Yang, Yuan-Yuan Liu, Man-Lang Cheng, Nian-Wei Dai, Min Sun, Jin Li, Yi-Ming Jiang. Enhancements of Passive Film and Pitting Resistance in Chloride Solution for 316LX Austenitic Stainless Steel After Sn Alloying[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 98-106.
Add to citation manager EndNote|Ris|BibTeX
Material | C | Si | Mn | S | P | Cr | Ni | Cu | Mo | N | Sn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
316L-0Sn | 0.027 | 0.49 | 1.37 | 0.004 | 0.009 | 16.20 | 10.19 | 0.17 | 2.11 | 0.024 | - | Bal. |
316L-0.062Sn | 0.024 | 0.51 | 1.33 | 0.005 | 0.009 | 16.49 | 9.90 | 0.19 | 2.06 | 0.030 | 0.062 | Bal. |
316L-0.21Sn | 0.022 | 0.45 | 1.36 | 0.003 | 0.009 | 16.33 | 10.05 | 0.19 | 2.07 | 0.026 | 0.21 | Bal. |
Table 1 Chemical compositions of 316LX ASS with different Sn addition (wt%)
Material | C | Si | Mn | S | P | Cr | Ni | Cu | Mo | N | Sn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
316L-0Sn | 0.027 | 0.49 | 1.37 | 0.004 | 0.009 | 16.20 | 10.19 | 0.17 | 2.11 | 0.024 | - | Bal. |
316L-0.062Sn | 0.024 | 0.51 | 1.33 | 0.005 | 0.009 | 16.49 | 9.90 | 0.19 | 2.06 | 0.030 | 0.062 | Bal. |
316L-0.21Sn | 0.022 | 0.45 | 1.36 | 0.003 | 0.009 | 16.33 | 10.05 | 0.19 | 2.07 | 0.026 | 0.21 | Bal. |
Fig. 1 a Typical current density curves for 316LX specimens in 1 mol/L NaCl solution, b derived CPT values with error bars for 316LX specimens with different Sn contents
Fig. 3 Surface morphologies of pits on 316LX samples after potentiodynamic polarization test in 1 mol/L NaCl solution: a 316L-0Sn; b 316L-0.062Sn; c 316L-0.21Sn
Material | Rs (Ω cm2) | Q1 (Ω-1 cm-2 s-n) | n 1 | R1 (Ω cm2) | Q2 (Ω-1 cm-2 s-n) | n 2 | R2 (Ω cm2) | Rp (Ω cm2) |
---|---|---|---|---|---|---|---|---|
316L-0Sn | 11.46 | 4.389 × 10-5 | 0.88 | 5.707 × 105 | 8.084 × 10-5 | 1 | 1.135 × 105 | 6.842 × 105 |
316L-0.062Sn | 10.56 | 1.264 × 10-4 | 1 | 7.198 × 104 | 3.954 × 10-5 | 0.89 | 6.126 × 105 | 6.846 × 105 |
316L-0.21Sn | 9.574 | 1.394 × 10-4 | 1 | 2.012 × 104 | 3.059 × 10-5 | 0.909 | 9.314 × 105 | 9.515 × 105 |
Table 2 Fitted results of impedance data for 316LX ASS samples in 1 mol/L NaCl solution
Material | Rs (Ω cm2) | Q1 (Ω-1 cm-2 s-n) | n 1 | R1 (Ω cm2) | Q2 (Ω-1 cm-2 s-n) | n 2 | R2 (Ω cm2) | Rp (Ω cm2) |
---|---|---|---|---|---|---|---|---|
316L-0Sn | 11.46 | 4.389 × 10-5 | 0.88 | 5.707 × 105 | 8.084 × 10-5 | 1 | 1.135 × 105 | 6.842 × 105 |
316L-0.062Sn | 10.56 | 1.264 × 10-4 | 1 | 7.198 × 104 | 3.954 × 10-5 | 0.89 | 6.126 × 105 | 6.846 × 105 |
316L-0.21Sn | 9.574 | 1.394 × 10-4 | 1 | 2.012 × 104 | 3.059 × 10-5 | 0.909 | 9.314 × 105 | 9.515 × 105 |
Material | Nd (cm-3) | Efb (V) | Lss (nm) |
---|---|---|---|
316L-0Sn | 5.50 × 1020 | - 0.4460 | 1.183 |
316L-0.062Sn | 4.22 × 1020 | - 0.4740 | 1.392 |
316L-0.21Sn | 3.20 × 1020 | - 0.490 | 5.142 |
Table 3 Semi-conductive parameters derived from Mott-Schottky plots for passive films obtained at 0 VSCE in 1 mol/L NaCl solution
Material | Nd (cm-3) | Efb (V) | Lss (nm) |
---|---|---|---|
316L-0Sn | 5.50 × 1020 | - 0.4460 | 1.183 |
316L-0.062Sn | 4.22 × 1020 | - 0.4740 | 1.392 |
316L-0.21Sn | 3.20 × 1020 | - 0.490 | 5.142 |
Material | O | Fe | Cr | Sn |
---|---|---|---|---|
316L-0Sn | 64.98 | 30.49 | 4.53 | - |
316L-0.21Sn | 67.10 | 14.85 | 12.01 | 6.04 |
Table 4 The derived composition data from XPS spectra for the 316L-0Sn and 316L-0.21Sn ASS samples (at%; the total atomic amounts of Cr, Fe, Sn and O elements have been set to 100 at%)
Material | O | Fe | Cr | Sn |
---|---|---|---|---|
316L-0Sn | 64.98 | 30.49 | 4.53 | - |
316L-0.21Sn | 67.10 | 14.85 | 12.01 | 6.04 |
|
[1] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
[2] | Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 799-807. |
[3] | Mingxiao Guo, Qi Yin, Miaoran Liu, Chen Pan, Zhenyao Wang. Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Salt Lake Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 857-870. |
[4] | Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550. |
[5] | Xin-Hui Gu, Jun-Xi Zhang, Xiao-Lei Fan, Lai-Chang Zhang. Corrosion Behavior of Selective Laser Melted AlSi10Mg Alloy in NaCl Solution and Its Dependence on Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 327-337. |
[6] | Guodong Hu, Pei Wang, Dianzhong Li, Yiyi Li. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. |
[7] | Hao-Yu Yi, Tian Liang, Min Wang, Xiang-Dong Zha, Ying-Che Ma, Kui Liu. Effects of Silicon on the Microstructure and Mechanical Properties of 15-15Ti Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1583-1590. |
[8] | Jie Wei, Chang-Gang Wang, Xin Wei, Xin Mu, Xiao-Yan He, Jun-Hua Dong, Wei Ke. Corrosion Evolution of Steel Reinforced Concrete Under Simulated Tidal and Immersion Zones of Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 900-912. |
[9] | Tian-Yi Sun, Yan-Jun Guo, Yi-Ming Jiang, Jin Li. Effect of Short-Time Aging on the Pitting Corrosion Behavior of a Novel Lean Duplex Stainless Steel 2002 [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6): 755-763. |
[10] | Yan-Sen Hao, Wan-Chun Liu, Zhen-Yu Liu. Microstructure Evolution and Strain-Dependent Constitutive Modeling to Predict the Flow Behavior of 20Cr-24Ni-6Mo Super-Austenitic Stainless Steel During Hot Deformation [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 401-414. |
[11] | Zhi-Nan Wang, Tian Liang, Wei-Wei Xing, Ai-Bing Du1, Ming Gao, Ying-Che Ma, Kui Liu. σ-Phase Precipitation Mechanism of 15Cr-15Ni Titanium-Modified Austenitic Stainless Steel During Long-Term Thermal Exposure [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 281-289. |
[12] | Yong-Ning Wang, Jie Chen, Hua-Bei Peng, Yu-Hua Wen. Shape Memory Effect Induced by Stress-induced α′ Martensite in a Metastable Fe-Cr-Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(6): 513-520. |
[13] | Zhong-Cheng Zheng,Yan-Xia Yu,Wei-Ping Zhang,Zhen-Yu Shen,Feng-Feng Luo,Li-Ping Guo,Yao-Yao Ren,Rui Tang. Evolution of Dislocation Loops in AL-6XN Stainless Steels Irradiated by Hydrogen Ions [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(1): 89-96. |
[14] | Hong-Liang Ming,Zhi-Ming Zhang,Peng-Yuan Xiu,Jian-Qiu Wang,En-Hou Han,Wei Ke,Ming-Xing Su. Microstructure, Residual Strain and Stress Corrosion Cracking Behavior in 316L Heat-Affected Zone [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 848-858. |
[15] | Min Sun, Ming Luo, Chao Lu, Tian-Wei Liu, Yan-Ping Wu, Lai-Zhu Jiang, Jin Li. Effect of Alloying Tin on the Corrosion Characteristics of Austenitic Stainless Steel in Sulfuric Acid and Sodium Chloride Solutions [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1089-1096. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||