Acta Metallurgica Sinica (English Letters) ›› 2016, Vol. 29 ›› Issue (1): 94-103.DOI: 10.1007/s40195-016-0366-5
Special Issue: 2016-2017铝合金专辑
• Article • Previous Articles
Zhen Gao, Jiang-Hua Chen†, Shi-Yun Duan, Xiu-Bo Yang, Cui-Lan Wu
Received:
2016-01-18
Revised:
2016-01-18
Online:
2016-01-18
Published:
2016-01-20
Zhen Gao, Jiang-Hua Chen†, Shi-Yun Duan, Xiu-Bo Yang, Cui-Lan Wu. Complex Precipitation Sequences of Al-Cu-Li-(Mg) Alloys Characterized in Relation to Thermal Ageing Processes[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(1): 94-103.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 HAADF-STEM images of the alloy natural aged for 60 days, viewed along a <100>Al direction: a an overview of the precipitates, b a Cu-monolayer GPI zone, c a δ′-GPI-δ′ precipitate composite in an “anti-phase” relation
Fig.3 Microstructures of samples ageing at 200°C for various times: a-c 2, 12 and 72 h, respectively, viewed along <100>Al. d δ′-θ′-δ′ composite phase as indicated by arrow in b. e, f 12 and 72 h, respectively, viewed along <011>Al Summarizing our observations and that reported for the samples aged at 180°C [6], the precipitation sequence in an Al-Cu-Li-Mg alloy treated with one-step artificial ageing at about 180-200°C can be considered as follows: SSSS → GPI + δ′-GPI-δ′ + GPB + T1 → δ′-θ′-δ′ + GPB + T1 + σ + S → GPB + T1 + σ + S.
Fig.5 Diameter distributions of GPI zones and δ′-GPI-δ′ composite precipitates observed a in the sample natural aged for 60 days, and b in the sample first natural aged for 60 days and then artificial-aged at 180°C for 0.5 h
Fig.6 Aberration-corrected HAADF-STEM images of different precipitates: a σ-phase in the sample two-step-aged at 180°C for 28 h, b GPB zones in the same sample as a, c GPB zones the sample two-step-aged at 180°C for 52 h, viewed along a <100>Al direction
Fig.10 HAADF-STEM images of precipitates in the samples aged at 200°C for 6, 28 and 72 h, respectively: a-c viewed along a <100>Al direction, d-f viewed along a <011>Al direction
Fig.11 <100>Al HAADF-STEM images showing the evolution of S-precipitates in the NA60 days sample aged at 200°C: a a S2-precipitate observed at 6 h, b a S4-precipitate observed at 28 h, c a large S-precipitate observed at 72 h, in which Li atoms segregate at its interfaces with the Al-matrix
Fig.12 Diameter distributions of T1-precipitates in the samples first natural aged for 60 days and then artificial-aged at 200°C for 6 h a, 28 h b, 72 h c
Fig.13 Aberration-corrected <112>Al HAADF-STEM images revealing different atomic structures of the T1-phase in different stages of its evolution: a the initial stage of GP T1 zone; b a transitional stage from GP T1 zone to T1-precipitate; c the T1-precipitate with 1 unit cell in thickness; d the T1-precipitate with 2 unit cells in thickness
[1] | T. Dursun, C. Soutis, Mater. Design 56, 862 (2014) |
[2] | E.A. Prog. Aerosp. Sci. 32, 131(1996) |
[3] | F.W. Gayle, F.H. Heubaum, J.R. Pickens, Scr. Metall. Mater. 24, 79(1990) |
[4] | A.K. Shukla, W.A. Scr. Mater. 56, 513(2007) |
[5] | A. Gaber, N. Afify, Phys. B Condens. Matter. 315, 1(2002) |
[6] | B.P. Huang, Z.Q. Zheng, Acta Mater. 46, 4381(1998) |
[7] | H.Y. Li, Y. Tang, Z.D. Zeng, Z.Q. Zheng, F. Zheng, Mater. Sci. Eng. A 498, 314 (2008) |
[8] | X.X. Yu, Y.R. Zhang, D.F. Yin, Z.M. Yu, S.F. Li, Acta Metall. Sin. (Engl. lett.) 28, 817(2015) |
[9] | C.E. April 1983 (TMS-AIME, Warrendale, 1984), p. 675 |
[10] | A. Guinier, Nature 142, 569 (1938) |
[11] | G.D. Preston, Nature 142, 570 (1938) |
[12] | T.J. Konno, K. Hiraga, M. Kawasaki, Scr. Mater. 44, 2303(2001) |
[13] | J. Silcock, T. Heal, H. Hardy, J. Inst. Met. 82, 239(1954) |
[14] | S.M. Kumaran, N. Priyadharsini, V. Rajendran, T. Jayakumar, P. Palanichamy, P. Shankar, B. Raj, Mater. Sci. Eng. A 435-436, 29(2006) |
[15] | J.M. Silcock, J. Inst. Met. 88, 357 (1959-60) |
[16] | B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, M. Weyland, Acta Mater. 61, 2207(2013) |
[17] | R. Yoshimura, T.J. Konno, E. Abe, K. Hiraga, Acta Mater. 51, 2891(2003) |
[18] | R.D. Schueller, A.K. Sachdev, F.E. Wawner, Scr. Metall. Mater. 27, 1289(1992) |
[19] | Z.R. Pan, Z.Q. Zheng, Z.Q. Liao, S.C. Li, Mater. Lett. 64, 942(2010) |
[20] | H.K. Hardy, J.M. Silock, J. Inst. Met. 423 (1955-1956) |
[21] | S. Van Smaalen, A. Meetsma, J.L. J. Solid State Chem. 85, 293(1990) |
[22] | C. Dwyer, M. Weyland, L.Y. Chang, B.C. Muddle, Appl. Phys. Lett. 98, 201901-201909 (2011) |
[23] | P. Donnadieu, Y. Shao, F. De Geuser, G.A. Botton, S. Lazar, M. Cheynet, Acta Mater. 59, 462(2011) |
[24] | H. Suzuki, M. Kanno, N. Hayashi, J. Jpn. Inst. Light. Met. 32, 88(1982) |
[25] | J.C. Huang, A.J. Ardell, Mater. Sci. Technol. 3, 176(1987) |
[26] | B. Noble, G.E. Thompson, Metal. Sci. J. 6, 167(1972) |
[27] | K.S. Kumar, S.A. Brown, J.R. Pickens, Acta Mater. 44, 1899(1996) |
[28] | M.J. Yin, J.H. Chen, S.B. Wang, Z.R. Liu, L.M. Cha, S.Y. Duan, C.L. Wu, Trans. Nonferr. Met. Soc. China 26, 1 (2016) |
[29] | B. Decreus, A. Deschamps, Adv. Eng. Mater. 15, 1082(2013) |
[30] | P.D. Nellist, S.J. Pennycook, Ultramicroscopy 78, 111 (1999) |
[31] | S. Hillyard, J. Silcox, Ultramicroscopy 58, 6 (1995) |
[32] | G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) |
[33] | J.P. Perdew, J. Chevary, S. Vosko, K.A. Jackson, M.R. Pederson, D. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) |
[34] | J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) |
[35] | H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) |
[36] | Z.R. Liu, J.H. Chen, S.B. Wang, D.W. Yuan, M.J. Yin, C.L. Wu, Acta Mater. 59, 7396(2011) |
[37] | S.B. Wang, J.H. Chen, M.J. Yin, Z.R. Liu, D.W. Yuan, J.Z. Liu, C.H. Liu, C.L. Wu, Acta Mater. 60, 6573(2012) |
[38] | Z. Gao, J.Z. Liu, J.H. Chen, S.Y. Duan, Z.R. Liu, W.Q. Ming, C.L. Wu, J. Alloys Compd. 624, 22(2015) |
[1] | Xiaosheng Zhou, Hao Chen, Chenxi Liu, Yongchang Liu. Residual Ferrite Control of 9Cr ODS Steels by Tailoring Reverse Austenite Transformation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 187-195. |
[2] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[3] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[4] | Quan Wen, Wenya Li, Vivek Patel, Luciano Bergmann, Benjamin Klusemann, Jorge F. dos Santos. Assessing the Bonding Interface Characteristics and Mechanical Properties of Bobbin Tool Friction Stir Welded Dissimilar Aluminum Alloy Joints [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 125-134. |
[5] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[6] | Guohua Wu, Chunchang Shi, Liang Zhang, Wencai Liu, Antao Chen, Wenjiang Ding. Effect of Different Ageing Processes on Microstructure and Mechanical Properties of Cast Al-3Li-2Cu-0.2Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1243-1251. |
[7] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[8] | Chengbo Yang, Jing Zhang, Meng Li, Xuejian Liu. Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1124-1134. |
[9] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[10] | Yu-Ning Zan, Yang-Tao Zhou, Xiao-Nan Li, Guo-Nan Ma, Zhen-Yu Liu, Quan-Zhao Wang, Dong Wang, Bo-Lv Xiao, Zong-Yi Ma. Enhancing High-Temperature Strength and Thermal Stability of Al2O3/Al Composites by High-Temperature Pre-treatment of Ultrafine Al Powders [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 913-921. |
[11] | Ning Li, Cun-Lei Jia, Zhi-Wei Wang, Li-Hui Wu, Ding-Rui Ni, Zheng-Kun Li, Hua-Meng Fu, Peng Xue, Bo-Lv Xiao, Zong-Yi Ma, Yi Shao, Yun-Long Chang. Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 947-956. |
[12] | Juan Liu, Yuze Wu, Lin Wang, Hui Wang, Charlie Kong, Alexander Pesin, Alexander P. Zhilyaev, Hailiang Yu. Fabrication and Characterization of High-Bonding-Strength Al/Ti/Al-Laminated Composites via Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 871-880. |
[13] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. |
[14] | Yongkui Li, Jianxin Lou, Hongtao Ju, Li Lin. Impact Toughness of Heat-Affected Zones of 11Cr Heat-Resistant Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 821-827. |
[15] | Fengqiang Xiao, Dongpo Wang, Wenbin Hu, Lei Cui, Zhiming Gao, Lanju Zhou. Effect of Interlayers on Microstructure and Properties of 2205/Q235B Duplex Stainless Steel Clad Plate [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 679-692. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||