Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (2): 279-289.DOI: 10.1007/s40195-014-0043-5
• research-article • Previous Articles Next Articles
Mustafa Türkmen1, Süleyman Gündüz2()
Received:
2013-06-25
Revised:
2013-09-27
Online:
2014-04-25
Published:
2014-05-07
Mustafa Türkmen, Süleyman Gündüz. Bake-Hardening Response of High Martensite Dual-Phase Steel with Different Morphologies and Volume Fractions[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 279-289.
Add to citation manager EndNote|Ris|BibTeX
Martensite morphology | Intercritic temperature (°C) | Martenzit grain size (μm) | Ferrit grain size (μm) | Martensite volume fraction (%) |
---|---|---|---|---|
Fibrous | 775 | 3.5 | 9 | 63 ± 2 |
Bulky | 775 | 43.1 | 36.3 | |
Fibrous | 820 | 4 | 9.2 | 86 ± 2 |
Bulky | 820 | 94 | 16.2 |
Table 1 Microstructure results of the dual-phase carbon steel with different morphologies intercritically heat treated at 775 and 820 °C
Martensite morphology | Intercritic temperature (°C) | Martenzit grain size (μm) | Ferrit grain size (μm) | Martensite volume fraction (%) |
---|---|---|---|---|
Fibrous | 775 | 3.5 | 9 | 63 ± 2 |
Bulky | 775 | 43.1 | 36.3 | |
Fibrous | 820 | 4 | 9.2 | 86 ± 2 |
Bulky | 820 | 94 | 16.2 |
Fig. 5 Stress–strain diagrams of the steels with fibrous (a) and bulky (b) martensites intercritically annealed at 775 °C with the martensite volume fractions of (63 ± 2)% and then bake hardened at 180 °C for different times of 10–160 min
Fig. 6 Stress–strain diagrams of the steels with fibrous (a) and bulky (b) martensite intercritically annealed at 820 °C with the martensite volume fractions of (86 ± 2)% and then bake hardened at 180 °C for different times of 10–160 min
Martensite morphology | Baking time at 180 °C (min) | YS after baking (MPa) | Δσ (MPa) | UTS (MPa) | Total elongation (%) | Reduction in area (%) |
---|---|---|---|---|---|---|
Fibrous | As-annealed | – | – | 622 | 18 | 77 |
10 | 625 | 95 | 694 | 15 | 76 | |
20 | 659 | 129 | 717 | 16 | 75 | |
40 | 634 | 104 | 686 | 17 | 76 | |
80 | 606 | 76 | 671 | 17 | 76 | |
160 | 560 | 30 | 634 | 18 | 76 | |
Bulky | As-annealed | – | – | 585 | 14 | 32 |
10 | 554 | 24 | 586 | 9 | 27 | |
20 | 576 | 46 | 624 | 9 | 26 | |
40 | 562 | 32 | 597 | 11 | 27 | |
80 | 543 | 13 | 585 | 12 | 27 | |
160 | 535 | 6 | 560 | 14 | 28 |
Table 2 The tensile properties of the dual-phase carbon steel with different morphologies intercritically heat treated at 775 °C and then bake hardened at 180 °C for different times of 10–160 min
Martensite morphology | Baking time at 180 °C (min) | YS after baking (MPa) | Δσ (MPa) | UTS (MPa) | Total elongation (%) | Reduction in area (%) |
---|---|---|---|---|---|---|
Fibrous | As-annealed | – | – | 622 | 18 | 77 |
10 | 625 | 95 | 694 | 15 | 76 | |
20 | 659 | 129 | 717 | 16 | 75 | |
40 | 634 | 104 | 686 | 17 | 76 | |
80 | 606 | 76 | 671 | 17 | 76 | |
160 | 560 | 30 | 634 | 18 | 76 | |
Bulky | As-annealed | – | – | 585 | 14 | 32 |
10 | 554 | 24 | 586 | 9 | 27 | |
20 | 576 | 46 | 624 | 9 | 26 | |
40 | 562 | 32 | 597 | 11 | 27 | |
80 | 543 | 13 | 585 | 12 | 27 | |
160 | 535 | 6 | 560 | 14 | 28 |
Martensite morphology | Baking time at 180 °C (min) | YS after baking (MPa) | Δσ (MPa) | UTS (MPa) | Total elongation (%) | Reduction in area (%) |
---|---|---|---|---|---|---|
Fibrous | As-annealed | – | – | 665 | 18 | 73 |
10 | 684 | 114 | 720 | 13 | 70 | |
20 | 748 | 178 | 778 | 14 | 71 | |
40 | 715 | 145 | 741 | 15 | 71 | |
80 | 655 | 85 | 694 | 16 | 72 | |
160 | 651 | 81 | 688 | 16 | 72 | |
Bulky | As-annealed | – | – | 600 | 13 | 31 |
10 | 600 | 30 | 625 | 8 | 26 | |
20 | 628 | 58 | 680 | 8 | 26 | |
40 | 621 | 51 | 670 | 9 | 27 | |
80 | 586 | 16 | 622 | 11 | 27 | |
160 | 579 | 9 | 595 | 12 | 27 |
Table 3 The tensile properties of the dual-phase carbon steel with different morphologies intercritically heat treated at 820 °C and then bake hardened at 180 °C for different times of 10–160 min
Martensite morphology | Baking time at 180 °C (min) | YS after baking (MPa) | Δσ (MPa) | UTS (MPa) | Total elongation (%) | Reduction in area (%) |
---|---|---|---|---|---|---|
Fibrous | As-annealed | – | – | 665 | 18 | 73 |
10 | 684 | 114 | 720 | 13 | 70 | |
20 | 748 | 178 | 778 | 14 | 71 | |
40 | 715 | 145 | 741 | 15 | 71 | |
80 | 655 | 85 | 694 | 16 | 72 | |
160 | 651 | 81 | 688 | 16 | 72 | |
Bulky | As-annealed | – | – | 600 | 13 | 31 |
10 | 600 | 30 | 625 | 8 | 26 | |
20 | 628 | 58 | 680 | 8 | 26 | |
40 | 621 | 51 | 670 | 9 | 27 | |
80 | 586 | 16 | 622 | 11 | 27 | |
160 | 579 | 9 | 595 | 12 | 27 |
Fig. 7 SEM fractographs of the as-annealed and bake-hardened dual-phase carbon steel with the fibrous martensite intercritically heat treated at 775 °C (a); then bake hardened at 180 °C for 20 (b); 160 min (c)
Fig. 8 SEM fractographs of the as-annealed and bake-hardened dual-phase carbon steel with bulky martensite intercritically heat treated at 775 °C (a); then bake hardened at 180 °C for 20 (b); 160 min (c)
Fig. 9 SEM fractographs of the as-annealed and bake-hardened dual-phase carbon steel with fibrous martensite intercritically heat treated at 820 °C (a); then bake hardened at 180 °C for 20 (b); 160 min (c)
Fig. 10 SEM fractographs of the as-annealed and bake-hardened dual-phase carbon steel with bulky martensite intercritically heat treated at 820 °C (a); then bake hardened at 180 °C for 20 (b); 160 min (c)
[1] | J. Kadkhodapour, A. Butz, S. Ziaei Rad, Acta Mater. 59, 2575(2011)10.1016/j.actamat.2010.12.039 |
[2] | A.P. Coldren, G. Tither, J. Met. 30, 16(1978) |
[3] | S. Sun, M. Pugh, Mater. Sci. Eng. A 335, 298(2002)10.1016/S0921-5093(01)01942-6 |
[4] | S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370(2012)10.1016/j.matdes.2012.05.010 |
[5] | W. Wang, M. Li, C. He, X. Wei, D. Wang, H. Dub, Mater. Des. 47, 510(2013)10.1016/j.matdes.2012.12.068 |
[6] | S. Kim, S. Lee, Metall. Mater. Trans. A 31A, 1753(2000)10.1007/s11661-998-0328-2 |
[7] | B.C. Hwang, T.Y. Cao, S.Y. Shin, S.H. Kim, S.H. Lee, S.J. Kim, Mater. Sci. Technol. 21, 967(2005)10.1179/174328405X47609 |
[8] | L.H. Sang, H. Byoungchul, L. Sunghak, L.C. Gil, K. Sung-Joon, Metall. Mater. Trans. A 35A, 2371(2004) |
[9] | W. Wangn, X. Wei, Int. J. Mech. 67, 100(2013)10.1016/j.ijmecsci.2012.12.011 |
[10] | G. Avramovic-Cingara, Y. Ososkova, M.K. Jain, D.S. Wilkinson, Mater. Sci. Eng. A 516, 7(2009)10.1016/j.msea.2009.03.055 |
[11] | G.R.SpeichinFundamentals of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt(AIME, New York, 1981), pp. 3–45 |
[12] | R.G. Davies, Metall. Trans. A 10, 1549(1979)10.1007/BF02812021 |
[13] | T.S. Byun, I.S. Kim, J. Mater. Sci. 28, 2923(1993)10.1007/BF00354695 |
[14] | M. Erdoğan, J. Mater. Sci. 37, 3623(2002)10.1023/A%3A1016548922555 |
[15] | R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai, Acta Mater. 47, 3475(1999)10.1016/S1359-6454(99)00190-1 |
[16] | Z.G. Wang, S.H. Ai, ISIJ Int. 39, 747(1999)10.2355/isijinternational.39.747 |
[17] | A. Bag, K.K. Ray, E.S. Dwarakadasa, Metall. Trans. A. 30, 1193(1999)10.1007/s11661-999-0269-4 |
[18] | A. Gural, S. Tekeli, T. Ando, J. Mater. Sci. 46, 7894(2006)10.1007/s10853-006-0871-4 |
[19] | N.J. Kim, G. Thomas, Metall. Trans. A 12, 483(1981)10.1007/BF02648546 |
[20] | A. Bayram, A. Uğuz, U. Murat, Mater. Charact. 43, 259(1999)10.1016/S1044-5803(99)00044-3 |
[21] | A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. Lond. Ser. A 62, 49(1949)10.1088/0370-1298/62/1/308 |
[22] | M. Asadi, H. Palkowski, Mater. Sci. Forum 638–642, 3062(2010)10.4028/www.scientific.net/MSF.638-642.3062 |
[23] | M. Asadi, N. Schulze, H. Palkowski, Adv. Mater. Res. 137, 35(2010)10.4028/www.scientific.net/AMR.137.35 |
[24] | M. Asadi, H. Palkowski, Steel Res. Int. 80, 499(2009) |
[25] | M. Asadia, B.C. De Coomanb, H. Palkowski, Mater. Sci. Eng. A 538, 42(2012)10.1016/j.msea.2012.01.010 |
[26] | M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59, 658(2011)10.1016/j.actamat.2010.10.002 |
[27] | T.Gladman, The Physical Metallurgy of Microalloyed Steels(The Institute of Materials, Cambridge, 1997), pp. 148–152 |
[28] | M. Erdoğan, S. Tekeli, Mater. Des. 23, 597(2002)10.1016/S0261-3069(02)00065-1 |
[29] | F.GeorgeV.Voort, Practical Applications Quantitative Metallography(ASTM 839, Philadelphia, 1984), pp. 65–72 |
[30] | Z. Li, T.S. Wang, X.J. Zhang, F.C. Zhang, Mater. Sci. Eng. A 552, 204(2012)10.1016/j.msea.2012.05.032 |
[31] | S. Gündüz, Mater. Sci. Eng. A 486, 63(2008)10.1016/j.msea.2007.08.056 |
[32] | G.R.SpeichR.L.MillerinStructure and Properties of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt(AIME, New York, 1979), pp. 145–181 |
[33] | M. Türkmen, S. Gündüz, Ironmak. Steelmak. 38, 346(2011)10.1179/1743281211Y.0000000002 |
[34] | J.M. Moyer, G.S. Ansell, Metall. Trans. A 6, 1785(1975)10.1007/BF02642308 |
[35] | D.L. Bourell, A. Rizk, Acta Metall. 31, 609(1983)10.1016/0001-6160(83)90051-2 |
[36] | R.G. Davies, Metall. Trans. A 9, 41(1978)10.1007/BF02647169 |
[37] | J.M.RigsbeeJ.K.AbrahamA.T.DavenportJ.E.FranklinJ.W.PickensinStructure and Properties of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt(AIME, New York, 1979), pp. 304–329 |
[38] | T. Waterschoot, K. Verbeken, B.C. De Cooman, ISIJ Int. 46, 138(2006)10.2355/isijinternational.46.138 |
[39] | G.R.SpeichA.B.MillerinFundamentals of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt(AIME, New York, 1981), pp. 279–304 |
[40] | R.O. Rocha, T.M.F. Melo, E.V. Pereloma, D.B. Santos, Mater. Sci. Eng. A 391, 296(2005)10.1016/j.msea.2004.08.081 |
[41] | A.J. Abdalla, L.R.O. Hein, M.S. Pereira, T.M. Hashimoto, Mater. Sci. Technol. 15, 1167(1999)10.1179/026708399101505211 |
[42] | A.M.ShermanR.G.DavisW.T.Donlonin,Fundamentals of Dual Phase Steels,New York, ed. by R.A. Kot, B.L. Bramfitt(AIME, New York, 1981), pp. 85–94 |
[43] | M.J. Molaei, A. Ekrami, Mater. Sci. Eng. A 527, 235(2009)10.1016/j.msea.2009.08.005 |
[44] | R.G.DaviesinFundamentals of Dual Phase Steels, ed. by R.A. Kot, B.L. Bramfitt(AIME, New York, 1981), pp. 265–277 |
[45] | A. Huseyin, K.Z. Havva, K. Ceylan, J. Iron Steel Res. 17, 73(2010)10.1016/S1006-706X(10)60089-1 |
[46] | M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738(2010)10.1016/j.msea.2010.01.004 |
[47] | H. Fischmeister, B. Karlsson, Z. Metall. 68, 311(1977) |
[48] | D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957(2009)10.1007/s10853-009-3392-0 |
[49] | P. Uggowitzer, H.P. Stuwe, Mater. Sci. Eng. A 55, 181(1982)10.1016/0025-5416(82)90131-8 |
[1] | Hamid Ashrafi, Morteza Shamanian, Rahmatollah Emadi, Ehsan Ghassemali. Void Formation and Plastic Deformation Mechanism of a Cold-Rolled Dual-Phase Steel During Tension [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 299-306. |
[2] | Pengfei Gao, Weijian Chen, Feng Li, Beijia Ning, Zhengzhi Zhao. Quasi-Situ Characterization of Deformation in Low-Carbon Steel with Equiaxed and Lamellar Microstructure Treated by the Quenching and Partitioning Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1657-1665. |
[3] | Li-Na Wang, Ping Yang, Ting Jin, Wei-Min Mao. Different Mechanisms of ε-M and α′-M Variant Selection and the Influencing Factors of ε-M Reversion During Dynamic Tension in TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 449-455. |
[4] | Li-Xiong Xu, Hui-Bin Wu, Xin-Tian Wang. Influence of Microstructural Evolution on the Hot Deformation Behavior of an Fe-Mn-Al Duplex Lightweight Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 389-400. |
[5] | Zhong-Yuan Feng, Xin-Jie Di, Shi-Pin Wu, Dong-Po Wang, Xiao-Qian Liu. Comparison of Microstructure and Residual Stress Between TIG and MAG Welding Using Low Transformation Temperature Welding Filler [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 263-272. |
[6] | Yong-Gang Deng, Hong-Shuang Di, Jie-Cen Zhang. Effect of Heat-Treatment Schedule on the Microstructure and Mechanical Properties of Cold-Rolled Dual-Phase Steels [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1141-1148. |
[7] | Hai-Yan Yang, Jing Li, Ping Yang. The Change of Orientation Relationships Between Austenite and α′-Martensite During Deformation in High Manganese TRIP Steel [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 289-294. |
[8] | Xi-Feng Li, Wei Ding, Jian Cao, Li-Yan Ye, Jun Chen. In Situ TEM Observation on Martensitic Transformation during Tensile Deformation of SUS304 Metastable Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 302-306. |
[9] | Xi-Li Lu, De-Xi Su, Feng Chen, Wei-Li Liu, Yang-Guang Shi, Yun-Xiang Tong, Li Li. Martensitic Transformation and Its Thermal Cycling Stability in Ni56Mn21Cu4Ga19 High-Temperature Shape Memory Ribbon [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 243-248. |
[10] | Miklós Tisza, Zsolt Lukács. Formability Investigations of High-Strength Dual-Phase Steels [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(12): 1471-1481. |
[11] | Anna Churakova, Dmitry Gunderov, Alexander Lukyanov, Niklas Nollmann. Transformation of the TiNi Alloy Microstructure and the Mechanical Properties Caused by Repeated B2-B19′ Martensitic Transformations [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(10): 1230-1237. |
[12] | Ke Zhang, Ping Liu, Wei Li, Zheng-Hong Guo, Yong-Hua Rong. High Strength-Ductility Nb-microalloyed Low Martensitic Carbon Steel: Novel Process and Mechanism [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(10): 1264-1271. |
[13] | Haitao Si, Renlong Xiong, Fan Song, Yuhua Wen, Huabei Peng. Wear Resistance of Austenitic Steel Fe–17Mn–6Si–0.3C with High Silicon and High Manganese [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 352-358. |
[14] | Zhiqing ZHANG, Huanhuan XU, Sainan WU and Yin LIU. Effects of Combined Pre-straining and Pre-aging on Natural Aging and Bakehardening Response of an Al-Mg-Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(3): 340-344. |
[15] | Zhonggang SUN, Guoqing CHEN, Xuesong FU, Yaoqi WANG, Hongliang HOU,Wenlong ZHOU. TEM investigations on hydrogen induced phasetransformation in Ti-6Al-4V alloys [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(5): 357-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||