Acta Metallurgica Sinica (English Letters) ›› 2014, Vol. 27 ›› Issue (1): 87-94.DOI: 10.1007/s40195-014-0026-6
• research-article • Previous Articles Next Articles
Yuxi Wu1(), Jia Guo1, Jieshan Hou2, Wanglin Zhang1, Renzhong Huang3, Xianguo Liu4, Xiufang Ma1, Qianfeng Zhang1
Received:
2013-11-05
Revised:
2013-12-17
Online:
2014-02-25
Published:
2014-03-11
Yuxi Wu, Jia Guo, Jieshan Hou, Wanglin Zhang, Renzhong Huang, Xianguo Liu, Xiufang Ma, Qianfeng Zhang. First-Principles Study of the Influence of Lattice Misfit on the Behavior and the Ductility Effect of Hafnium in Ni–Ni3Al System[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(1): 87-94.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Two cluster models used in calculations. According to the C4V symmetry of the models, atoms are labeled with number n (n = 1–16). The cyan spheres donate Al atoms, the black spheres Ni atoms, and the blue spheres are substitute site for Hf: a model 1, the center of Ni3Al region is Ni site, 1Mj(j = 1–4) is occupied by Ni or Hf atom; b model 2, the center of Ni3Al region is Al site, 2Mj (j = 1, 2) is occupied by Ni or Hf atom, 2Mj (j = 3, 4) is occupied by Al or Hf atom
Fig. 4 The substitution energy \( E_{iMj}^{\text{s}} \) for Hf at sites iMj (i = 1, 2; j = 1–4) as a function of lattice misfit δD for Ni3Al alloys in model 1 a model 2 b. The dashed lines are crossing zero
Fig. 5 The substitution energy \( E_{iMj}^{\text{s}} \) for Hf at sites iMj (i = 1, 2; j = 1–4) as a function of lattice misfit δU for Ni alloys in model 1 a model 2 b
![]() |
Table 1 The BOP, BOV, 2γint/E, and τmax at different sites 2Mj before (Hf free) and after (Hf doped) the substitution of Hf under different misfits δ in model 2
![]() |
[1] | P.S. Chen, R.C. Wilcox, Metall. Trans. A 22, 2031(1991)10.1007/BF02669870 |
[2] | W.S. Walston, I.M. Bernstein, A.W. Thompson, Metall. Trans. A 23, 1313(1992)10.1007/BF02665063 |
[3] | C.T. Liu, C.L. White, J.A. Horton, Acta Metall. 33, 213(1985)10.1016/0001-6160(85)90139-7 |
[4] | E.P. Geoge, C.T. Liu, D.P. Pope, Scr. Metall. Mater. 27, 365(1992)10.1016/0956-716X(92)90527-L |
[5] | E.P. Geoge, C.T. Liu, D.P. Pope, Scr. Metall. Mater. 28, 857(1993)10.1016/0956-716X(93)90366-Z |
[6] | W.H. Tian, M. Nemoto, Acta Metall. Sin. (Engl. Lett.) 19, 157(2006)10.1016/S1006-7191(06)60038-0 |
[7] | P.L. Mao, Y. Xin, K. Han, W.G. Jiang, Acta Metall. Sin (Engl. Lett.) 22, 365(2009)10.1016/S1006-7191(08)60110-6 |
[8] | Q. Wu, S.S. Li, Comput. Mater. Sci. 53, 436(2012)10.1016/j.commatsci.2011.09.016 |
[9] | D.E. Kim, S.L. Shang, Z.K. Liu, Acta Mater. 60, 184(2012) |
[10] | N. Mu, T. Izumi, L. Zhang, B. Gleeson, Surf. Coat. Technol. 202, 628(2007)10.1016/j.surfcoat.2007.08.014 |
[11] | H. Bohn, J.M. Williams, J.H. Barrett, C.T. Liu,in High Temperature Ordered Alloys, ed. by N.S. Stoloff, C.C. Koch, C.T. Liu, O. Izumi(MRS, Pittsburgh PA, 1987), pp. 117–127 |
[12] | H.G. Bohn, R. Schumacher, R.J. Vianden,High Temperature Ordered Intermetallic Alloys II (Materials Research Society, Pittsburgh, PA, 1987) |
[13] | J. Bentley,in Proceedings 44th Annual Meeting of the Electron Microscope Society, America, Albuquerque, New Mexico, 1986, ed. by G.W. Bailey(San Francisco Press, San Francisco, 1986), p. 704 |
[14] | J.H. Barrett, Nucl. Instrum. Methods Phys. Res. Sect. B 30, 546(1988)10.1016/0168-583X(88)90131-0 |
[15] | M.H.F. Sluiter, Y. Kawazoe, Phys. Rev. B 51, 4062(1995)10.1103/PhysRevB.51.4062 |
[16] | C. Jiang, D.J. Sordelet, B. Gleeson, Acta Mater. 54, 1147(2006)10.1016/j.actamat.2005.10.039 |
[17] | T. Izumi, B. Gleeson, Mater. Sci. Forum 221, 522(2006) |
[18] | N. Mu, T. Izumi, L. Zhang, B. Gleeson,in Superalloys 2008, ed. by R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.A. Woodard(Wiley, Hoboken, NJ, 2008), p. 62910.7449/2008/Superalloys_2008_629_637 |
[19] | Y. Amouyal, Z.G. Mao, D.N. Seidman, Appl. Phys. Lett. 95, 161909(2009)10.1063/1.3248146 |
[20] | Y.Y. Mitarai, Y. Ro, T. Maruko, H. Harada, Metall. Mater. Trans. A 29, 537(1998)10.1007/s11661-998-0135-9 |
[21] | R.N. Ghosh, R.V. Curtis, M. McLean, Acta Metall. Mater. 38, 1977(1990)10.1016/0956-7151(90)90309-5 |
[22] | B.A. Shollock, J.Y. Buffiére, R.V. Curtis, M.B. Henderson, M. McLean, Scr. Mater. 36, 1471(1997)10.1016/S1359-6462(97)00035-3 |
[23] | M.V. Nathal, L.J. Ebert, Scr. Metall. 17, 1151(1983)10.1016/0036-9748(83)90472-6 |
[24] | P. Peng, Z.H. Jin, R. Yang, Z.Q. Hu, J. Mater. Sci. 39, 3957(2004)10.1023/B%3AJMSC.0000031477.24789.93 |
[25] | A.W. Thompson, J.A. Brooks, Acta Metall. 30, 2197(1982)10.1016/0001-6160(82)90140-7 |
[26] | Y.X. Wu, X.Y. Li, Y.M. Wang, Acta Mater. 55, 4845(2007)10.1016/j.actamat.2007.05.006 |
[27] | Y.X. Wu, Y.M. Wang, J. Mater. Sci. Technol. 24, 165(2008) |
[28] | D.E. Ellis, G.S. Painter, Phys. Rev. B 2, 2887(1970)10.1103/PhysRevB.2.2887 |
[29] | D.E. Ellis, G.A. Benesh, E. Byrom, Phys. Rev. B 20, 1198(1979)10.1103/PhysRevB.20.1198 |
[30] | B. Delley, D.E. Ellis, A.J. Freeman, Phys. Rev. B 27, 2132(1983)10.1103/PhysRevB.27.2132 |
[31] | U. von Barth, L. Hedin, J. Phys. C 5, 1629(1972)10.1088/0022-3719/5/13/012 |
[32] | R.S. Mulliken, J. Chem. Phys. 23, 1833(1955)10.1063/1.1740588 |
[33] | L.J. Carroll, Q. Feng, J.F. Mansfield, T.M. Pollock, Mater. Sci. Eng. A 457, 292(2007)10.1016/j.msea.2006.12.036 |
[34] | J.R. Rice, J.S. Wang, Mater. Sci. Eng. A 107, 23(1989)10.1016/0921-5093(89)90372-9 |
[35] | R.W. Smith, W.T. Geng, C.B. Geller, R. Wu, A.J. Freeman, Scr. Mater. 43, 957(2000)10.1016/S1359-6462(00)00521-2 |
[36] | R. Yang, Y.M. Wang, H.Q. Ye, C.Y. Wang, J. Phys. 13, 4485(2001) |
[37] | R. Yang, D.L. Zhao, Y.M. Wang, S.Q. Wang, H.Q. Ye, C.Y. Wang, Acta Mater. 49, 1079(2001)10.1016/S1359-6454(00)00382-7 |
[38] | J.X. Shang, C.Y. Wang, D.L. Zhao, Comput. Mater. Sci. 22, 193(2001)10.1016/S0927-0256(01)00189-6 |
[39] | M. Kim, C.B. Geller, A.J. Freeman, Scr. Mater. 50, 1341(2004)10.1016/j.scriptamat.2004.02.003 |
[40] | S.Y. Wang, C.Y. Wang, D.L. Zhao, J. Alloy. Compd. 368, 308(2004)10.1016/j.jallcom.2003.06.002 |
[41] | S.J. Braithwaite, P. Rez, Acta Mater. 53, 2715(2005)10.1016/j.actamat.2005.02.033 |
[42] | Y.H. Chew, C.C. Wong, C.D. Breach, F. Wulff, T.T. Lin, C.B. He, Thin Solid Films 504, 346(2006)10.1016/j.tsf.2005.09.055 |
[43] | M.A. Meyers, K.K. Chawla,Mechanical Behavior of Materials, 10th edn. (Prentice-Hall, Englewood Cliffs, NJ, 1999), p. 49 |
[44] | P.S. Kotval, J.D. Venables, R.W. Calder, Metall. Trans. 3, 457(1972)10.1007/BF02642049 |
[1] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[2] | Zihao Tan, Lin Yang, Xinguang Wang, Yunling Du, Lihua Ye, Guichen Hou, Yanhong Yang, Jinlai Liu, Jide Liu, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Evolution of TCP Phase During Long Term Thermal Exposure in Several Re-Containing Single Crystal Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 731-740. |
[3] | Sheng-Ya He, Chuan-Jun Li, Tong-Jun Zhan, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. Reduction in Microsegregation in Al-Cu Alloy by Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 267-274. |
[4] | Xin He, Jianbo Zhang, Yuanyi Peng, Jingan Li, Jian Ding, Chang Liu, Xingchuan Xia, Xueguang Chen, Yongchang Liu. Microstructure Evolution of Primary γ′ Phase in Ni3Al-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1709-1726. |
[5] | Bin Yin, Guang Xie, Xiangwei Jiang, Shaohua Zhang, Wei Zheng, Langhong Lou. Microstructural Instability of an Experimental Nickel-Based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1433-1441. |
[6] | Xin-Tong Lian, Wen-Ru Sun, Xin Xin, Fang Liu, Dan-Dan Zheng. Influence of Fe on Microstructure and Mechanical Properties in P-doped Ni-Cr-Fe Alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(6): 771-779. |
[7] | Kang-Xin Chen, Hou-Fa Shen. Numerical Simulation of Macrosegregation Caused by Thermal-Solutal Convection and Solidification Shrinkage Using ALE Model [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1396-1406. |
[8] | Xue Liang, Qiang Li, Jiao Huang, Mei-Yi Yao, Hui Li, Qing-Dong Liu. Atom Probe Tomography Study of Fe Segregation at Phase Interface in Zr-2.5Nb Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1281-1286. |
[9] | Teng Tu, Xian-Hua Chen, Jiao Chen, Chao-Yue Zhao, Fu-Sheng Pan. A High-Ductility Mg-Zn-Ca Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 23-30. |
[10] | Li Xiang, Xiao-Hua Min, Xin Ji, Satoshi Emura, Cong-Qian Cheng, Koichi Tsuchiya. Effect of Pre-cold Rolling-Induced Twins and Subsequent Precipitated ω-Phase on Mechanical Properties in a β-Type Ti-Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(6): 604-614. |
[11] | Hai-Tao Li, Yong-Chun Liang, Wan-Li Zhong, Xue-Zhi Qin, Guo ?Jian-Ting, Lan-Zhang Zhou, Wei-Li Ren. Tensile Properties and Deformation Behavior of Several Cast Ni-Based Superalloys Fabricated by Different Solidification Ways [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 280-288. |
[12] | Tan He,Rui Hu,Tie-Bang Zhang,Jin-Shan Li. Effect of Nb Content on Solidification Characteristics and Microsegregation in Cast Ti-48Al-xNb Alloys [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 714-721. |
[13] | Fu-Yuan Dong, Peng Zhang, Jian-Chao Pang, Qi-Qiang Duan, Yi-Bin Ren, Ke Yang, Zhe-Feng Zhang. Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steels Subjected to Equal-Channel Angular Pressing [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 140-149. |
[14] | Cui-Hong Li, Qi-Qiang Duan, Zhe-Feng Zhang. Tearing Toughness of Ductile Metals [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 150-155. |
[15] | Jun Luo, Hong Yan, Nan Zheng, Rong-Shi Chen. Effects of Zinc and Calcium Concentration on the Microstructure and Mechanical Properties of Hot-Rolled Mg-Zn-Ca Sheets [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(2): 205-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||