Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (2): 299-312.DOI: 10.1007/s40195-024-01806-w
Previous Articles Next Articles
Xiaoqing Liu1,2, Xianke Zhang1, Jinwei Gao1(), Xiurong Zhu1, Lei Xiao3(
), Zhengchi Yang1, Lijun Tan1, Chubin Yang2, Biao Wu1, Huixin Chen1, Jiayu Huang1
Received:
2024-08-21
Revised:
2024-10-10
Accepted:
2024-10-22
Online:
2025-02-10
Published:
2025-01-03
Contact:
Jinwei Gao, Xiaoqing Liu, Xianke Zhang, Jinwei Gao, Xiurong Zhu, Lei Xiao, Zhengchi Yang, Lijun Tan, Chubin Yang, Biao Wu, Huixin Chen, Jiayu Huang. Achieving Ultrahigh Strength in Mg-1.2Y-1.2Ni (at.%) Alloy via Tailoring Extrusion Rate[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 299-312.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 a SEM image of as-cast Mg-1.2Y-1.2Ni alloy; b SEM-EDS results corresponding to the phases indicated by arrows in Fig. 1a; c SEM image of as-cast Mg-1.2Y-1.2Ni alloy; elemental distribution of d Mg, Y and Ni; e Y; f Ni
Fig. 2 a-c Band contrast images and d-f inverse pole figure (IPF) maps of Mg-1.2Y-1.2Ni alloy extruded at 400 °C with extrusion rate of a, d 1 mm/s, b, e 3 mm/s c, f 6 mm/s
Fig. 3 Elemental mapping distribution of a, d, g Mg, b, e, h Y, c, f, i Ni of the Mg-1.2Y-1.2Ni alloy extruded at 400 °C with extrusion rate of a-c 1 mm/s, d-f 3 mm/s, g-i 6 mm/s
Fig. 4 Inverse pole figures (IPFs) from a non-DRXed regions and b DRXed regions of Mg-1.2Y-1.2Ni alloy extruded at 400 °C with 1 mm/s; IPFs from full regions of the alloy extruded at 400 °C with extrusion rate of c 1 mm/s, d 3 mm/s, e 6 mm/s
Fig. 5 Bar charts showing distribution of GND density of Mg-1.2Y-1.2Ni alloy extruded at 400 °C in a non-DRXed regions and b DRXed regions in the alloy extruded at a ram rate of 1.0 mm/s, bar charts showing distribution of GND density from full regions of the alloy extruded at 400 °C with different extrusion rate c 3 mm/s, d 6 mm/s
Fig. 6 TEM BF micrographs of Mg-1.2Y-1.2Ni alloy extruded at 400 °C with different extrusion rate a 1 mm/s, b 3 mm/s, c 6 mm/s; TEM DF micrographs of the alloy extruded at 400 °C with different extrusion rate d 1 mm/s, e 3 mm/s, f 6 mm/s
Fig. 7 a TEM BF image and b SAED pattern of Mg-1.2Y-1.2Ni alloy extruded at 3 mm/s; c HRTEM figure corresponding to the black dashed region in a; d TEM BF image of the alloy extruded at 3 mm/s; e HRTEM figure and f FFT image corresponding to the white dashed region in d; g HAADF-STEM image of the alloy extruded at 3 mm/s; elemental mappings of h Y and i Ni of the area in g; j TEM BF image corresponding to the phase C in d; k SAED pattern and l HRTEM figure corresponding to the white dashed region in j
Alloy (at.%) | Condition | TYS (MPa) | UTS (MPa) | EL (%) | RE content (wt%) | Reference |
---|---|---|---|---|---|---|
Mg-1.2Y-1.2Ni | As-cast | 37 ± 2.3 | 106 ± 2.1 | 3.6 ± 0.8 | 4.18 | This work |
Mg-1.2Y-1.2Ni | As-extruded (1 mm/s) | 501 ± 9.2 | 524 ± 10.1 | 1.5 ± 0.3 | 4.18 | This work |
Mg-1.2Y-1.2Ni | As-extruded (3 mm/s) | 421 ± 8.3 | 440 ± 9.1 | 2.6 ± 0.5 | 4.18 | This work |
Mg-1.2Y-1.2Ni | As-extruded (6 mm/s) | 281 ± 3.1 | 348 ± 2.7 | 6.2 ± 1.3 | 4.18 | This work |
Mg-1Y-2Ni | As-extruded | 372 | 403 | 6.2 | 3.47 | [ |
Mg-3Y-2Ni | As-extruded | 358 | 463 | 14.6 | 9.90 | [ |
Mg-1Y-1Ni | As-extruded | 390 ± 1.5 | 415 ± 3.6 | 9.1 ± 0.8 | 3.51 | [ |
Mg-1Y-0.5Zn | As-extruded | 235 | 287 | 18.4 | 3.53 | [ |
Mg-3Y-1.5Zn | As-extruded | 239 | 357 | 11.9 | 9.93 | [ |
Mg-2Y-1Zn | As-extruded | 320 | 375 | 3.3 | 6.84 | [ |
Mg-2Y-1.5Zn | As-extruded | 199 | 343 | 11.3 | 6.78 | [ |
Mg-6.3Y-3.3Ni | As-extruded | 460 | 526 | 8 | 19 | [ |
Mg-2.1Gd-1.6Y-0.1Zr | As-extruded | 500 | 539 | 2.7 | 16.6 | [ |
Mg-2.2Gd-0.4Y-0.4Zn-0.3Mn | As-extruded | 543 | 564 | 1.2 | 13.9 | [ |
Mg-2Gd-1.4Y-0.2Nd-0.7Zn-0.2Zr | As-extruded | 502 | 547 | 2.6 | 16.5 | [ |
Table 1 Comparison of reported tensile properties values and experimental values of Mg-Y-Ni/Zn alloys
Alloy (at.%) | Condition | TYS (MPa) | UTS (MPa) | EL (%) | RE content (wt%) | Reference |
---|---|---|---|---|---|---|
Mg-1.2Y-1.2Ni | As-cast | 37 ± 2.3 | 106 ± 2.1 | 3.6 ± 0.8 | 4.18 | This work |
Mg-1.2Y-1.2Ni | As-extruded (1 mm/s) | 501 ± 9.2 | 524 ± 10.1 | 1.5 ± 0.3 | 4.18 | This work |
Mg-1.2Y-1.2Ni | As-extruded (3 mm/s) | 421 ± 8.3 | 440 ± 9.1 | 2.6 ± 0.5 | 4.18 | This work |
Mg-1.2Y-1.2Ni | As-extruded (6 mm/s) | 281 ± 3.1 | 348 ± 2.7 | 6.2 ± 1.3 | 4.18 | This work |
Mg-1Y-2Ni | As-extruded | 372 | 403 | 6.2 | 3.47 | [ |
Mg-3Y-2Ni | As-extruded | 358 | 463 | 14.6 | 9.90 | [ |
Mg-1Y-1Ni | As-extruded | 390 ± 1.5 | 415 ± 3.6 | 9.1 ± 0.8 | 3.51 | [ |
Mg-1Y-0.5Zn | As-extruded | 235 | 287 | 18.4 | 3.53 | [ |
Mg-3Y-1.5Zn | As-extruded | 239 | 357 | 11.9 | 9.93 | [ |
Mg-2Y-1Zn | As-extruded | 320 | 375 | 3.3 | 6.84 | [ |
Mg-2Y-1.5Zn | As-extruded | 199 | 343 | 11.3 | 6.78 | [ |
Mg-6.3Y-3.3Ni | As-extruded | 460 | 526 | 8 | 19 | [ |
Mg-2.1Gd-1.6Y-0.1Zr | As-extruded | 500 | 539 | 2.7 | 16.6 | [ |
Mg-2.2Gd-0.4Y-0.4Zn-0.3Mn | As-extruded | 543 | 564 | 1.2 | 13.9 | [ |
Mg-2Gd-1.4Y-0.2Nd-0.7Zn-0.2Zr | As-extruded | 502 | 547 | 2.6 | 16.5 | [ |
Fig. 9 a Schematic illustration of the interrupted extrusion specimen; b-d BC images, e-g IPF maps and h-j PFs of the area I, area II and area III in the interrupted extrusion specimen of Mg-1.2Y-1.2Ni alloy extruded at 3 mm/s
Fig. 10 TEM BF images of a the area I, b and c the area II, e the area III of the interrupted Mg-1.2Y-1.2Ni extrusion specimen; d HRTEM micrograph corresponding to the white dashed area in c; f HRTEM image corresponding to the yellow dashed area in e
Alloy | Regions | D (nm) | Φ (GPa) | λ (nm) | b (nm) | σ (MPa) | |
---|---|---|---|---|---|---|---|
Mg-1.2Y-1.2Ni-1 | non-DRXed | Particle | 29 | - | 110 | 0.32 | 46 |
Planar | - | 0.83 | - | 0.61 | 42 | ||
DRXed | Particle | 29 | - | 110 | 0.32 | 46 | |
Mg-1.2Y-1.2Ni-3 | non-DRXed | Particle | 36 | - | 124 | 0.32 | 43 |
Planar | - | 0.83 | - | 0.61 | 34 | ||
DRXed | Particle | 36 | - | 124 | 0.32 | 43 |
Table 2 Structural parameters of the Mg-1.2Y-1.2Ni-1 and Mg-1.2Y-1.2Ni-3 alloys, and the strengthening contributions from precipitations
Alloy | Regions | D (nm) | Φ (GPa) | λ (nm) | b (nm) | σ (MPa) | |
---|---|---|---|---|---|---|---|
Mg-1.2Y-1.2Ni-1 | non-DRXed | Particle | 29 | - | 110 | 0.32 | 46 |
Planar | - | 0.83 | - | 0.61 | 42 | ||
DRXed | Particle | 29 | - | 110 | 0.32 | 46 | |
Mg-1.2Y-1.2Ni-3 | non-DRXed | Particle | 36 | - | 124 | 0.32 | 43 |
Planar | - | 0.83 | - | 0.61 | 34 | ||
DRXed | Particle | 36 | - | 124 | 0.32 | 43 |
Alloy | Regions | σGB (MPa) | σdislo (MPa) | σtex (MPa) | σ0 | σOrowan (MPa) | Predicted strength (vol.%) | |
---|---|---|---|---|---|---|---|---|
Mg-1.2Y-1.2Ni-1 | DRXed | 264 | 69 | - | 37 | 46 | 416 (43%) | 489 |
non-DRXed | - | 219 | 198 | 37 | 88 | 542 (17.3%) | ||
LPSO phase | - | - | - | - | - | 543 (39.7%) | ||
Mg-1.2Y-1.2Ni-3 | DRXed | 205 | 67 | - | 37 | 43 | 352 (61%) | 420 |
non-DRXed | - | - | 154 | 37 | 77 | 268 (1.9%) | ||
LPSO phase | - | - | - | - | - | 543 (37.1%) |
Table 3 Strengthening contributions from dislocations, GBs, precipitations, σ0 and texture of the Mg-1.2Y-1.2Ni-1 and Mg-1.2Y-1.2Ni-3 alloys
Alloy | Regions | σGB (MPa) | σdislo (MPa) | σtex (MPa) | σ0 | σOrowan (MPa) | Predicted strength (vol.%) | |
---|---|---|---|---|---|---|---|---|
Mg-1.2Y-1.2Ni-1 | DRXed | 264 | 69 | - | 37 | 46 | 416 (43%) | 489 |
non-DRXed | - | 219 | 198 | 37 | 88 | 542 (17.3%) | ||
LPSO phase | - | - | - | - | - | 543 (39.7%) | ||
Mg-1.2Y-1.2Ni-3 | DRXed | 205 | 67 | - | 37 | 43 | 352 (61%) | 420 |
non-DRXed | - | - | 154 | 37 | 77 | 268 (1.9%) | ||
LPSO phase | - | - | - | - | - | 543 (37.1%) |
[1] | Q.Y. Liao, D.Z. Zhao, Q.C. Le, W.X. Hu, Y.C. Jiang, W.Y. Zhou, L. Ren, D.D. Li, Z.Y. Yin, Acta Metall. Sin. -Engl. Lett. 37, 1115 (2024) |
[2] | B.S. Cheng, D.P. Li, B.K. Xing, R.Q. Hou, P.L. Jiang, S.J. Zhu, S.K. Guan, Acta Metall. Sin. -Engl. Lett. 37, 1147 (2024) |
[3] | X. Liu, X. Qiao, L. Ye, X. Zhang, M. Zheng, Mater. Today Commun. 36, 106710 (2023) |
[4] | X. Fan, W. Tang, S. Zhang, D. Li, Y. Peng, Acta Metall. Sin. -Engl. Lett. 23, 334 (2010) |
[5] |
T. Trang, J. Zhang, J. Kim, A. Zargaran, J. Hwang, B. Suh, N. Kim, Nat. Commun. 9, 2522 (2018)
DOI PMID |
[6] | X. Liu, X. Qiao, Z. Li, M. Zheng, Mater. Charact. 162, 110197 (2020) |
[7] | X. Wang, J. Guo, Z. Zeng, P. Zhou, R. Wang, X. Liu, K. Gao, J. Sun, Y. Yuan, F. Wang, Acta Metall. Sin. -Engl. Lett. 37, 1161 (2024) |
[8] | L.B. Tong, X. Li, H. Zhang, Mater. Sci. Eng. A 563, 182 (2013) |
[9] | C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol. 34, 2238 (2018) |
[10] | Y. Zhuang, L. Ye, D. Zhao, H. Zheng, S. Jia, S. Gao, X. Liu, J. Gui, J. Wang, J. Alloy. Compd. 749, 976 (2018) |
[11] | Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Scr. Mater. 55, 453 (2006) |
[12] | M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59, 3646 (2011) |
[13] | T. Itoi, T. Suzuki, Y. Kawamura, M. Hirohashi, Mater. Trans. 51, 1536 (2010) |
[14] | S.Z. Wu, X.G. Qiao, M.Y. Zheng, J. Mater. Sci. Technol. 45, 123 (2020) |
[15] | S. Zhu, R. Lapovok, J. Nie, Y. Estrin, S. Mathaudhu, Mater. Sci. Eng. A 692, 35 (2017) |
[16] | T. Itoi, K. Takahashi, H. Moriyama, M. Hirohashi, Scr. Mater. 59, 1155 (2008) |
[17] | S.Z. Wu, X.G. Qiao, S. Qin, Y.Q. Chi, M.Y. Zheng, Mater. Sci. Eng. A 831, 142198 (2022) |
[18] | H. Liu, F. Xue, J. Bai, J. Zhou, J. Mater. Eng. Perform. 22, 3501 (2013) |
[19] | Y. Zhang, P. Zhang, Z. Yuan, T. Yang, Y. Qi, D. Zhao, J. Rare Earth. 33, 875 (2015) |
[20] | R. Hielscher, H. Schaeben, J. Appl. Crystallogr. 41, 1025 (2008) |
[21] | X.Q. Liu, X.G. Qiao, W.C. Xie, R.S. Pei, L. Yuan, M.Y. Zheng, Mater. Sci. Eng. A 839, 142847 (2022) |
[22] | X. Liu, X. Qiao, Y. Liu, R. Pei, X. Zhang, L. Yuan, Y. Chi, X. Zhu, M. Yu, M. Zheng, J. Mater. Res. Technol. 25, 1167 (2023) |
[23] | L. Ye, Y. Liu, D.S. Zhao, Y.L. Zhuang, S.B. Gao, X.Q. Liu, J.P. Zhou, J.N. Gui, J.B. Wang, Mater. Sci. Eng. A 724, 121 (2018) |
[24] | Z. Yu, C. Xu, J. Meng, S. Kamado, Mater. Sci. Eng. A 703, 348 (2017) |
[25] | X. Heng, Y. Zhang, W. Rong, Y. Wu, L. Peng, Mater. Des. 169, 107666 (2019) |
[26] | Z. Yu, Y. Huang, X. Qiu, G. Wang, F. Meng, N. Hort, J. Meng, Mater. Sci. Eng. A 622, 121 (2015) |
[27] | B. He, B. Hu, H. Yen, G. Cheng, Z. Wang, H. Luo, M. Huang, Science 357, 1030 (2017) |
[28] | X. Liu, Z. Zhang, W. Hu, Q. Le, L. Bao, J. Cui, J. Mater. Process. Technol. 32, 317 (2016) |
[29] | A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49, 1204 (2001) |
[30] | M. Zhan, C. Li, W. Zhang, D. Zhang, Acta Metall. Sin. -Engl. Lett. 25, 70 (2012) |
[31] | D. Liu, Z. Liu, E. Wang, Mater. Sci. Eng. A 612, 211 (2014) |
[32] | H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han, Z. Liu, C. Li, X. Wu, H. Chen, C. He, L. Chai, Y. Wang, J. Nie, Acta Mater. 149, 360 (2018) |
[33] | H. Pan, R. Kang, J. Li, Z. Zeng, H. Xie, Q. Huang, C. Yang, Y. Ren, G. Qin, Acta Mater. 186, 285 (2020) |
[34] | H. Zhang, K. Lu, R. Pippan, X. Huang, N. Hansen, Scr. Mater. 65, 483 (2011) |
[35] | S.Z. Wu, Y.Q. Chi, G. Garces, X.H. Zhou, H.G. Brokmeier, X.G. Qiao, M.Y. Zheng, J. Magnes. Alloy. 12, 3631 (2024) |
[36] | Z. Zeng, Y. Zhu, S. Xu, M. Bian, C. Davies, N. Birbilis, J. Nie, Acta Mater. 105, 479 (2016) |
[37] | X. Liu, X. Qiao, X. Zhang, D. Zhang, L. Xiao, W. Zhong, X. Zhu, M. Zheng, J. Mater. Res. Technol. 28, 2239 (2024) |
[38] | W. Yuan, S.K. Panigrahi, J.Q. Su, R.S. Mishra, Scr. Mater. 65, 995 (2011) |
[39] | P. Luo, D. McDonald, W. Xu, S. Palanisamy, M. Dargusch, K. Xia, Scr. Mater. 66, 787 (2012) |
[40] | Z. Zeng, Y. Zhu, J. Nie, S. Xu, C. Davies, N. Birbilis, Metall. Mater. Trans. A 50, 4353 (2019) |
[41] | G.L. Bi, Y.X. Han, J. Jiang, Y.D. Li, D.Y. Zhang, D. Qiu, Mater. Sci. Eng. A 760, 255 (2019) |
[42] | M. Tane, Y. Nagai, H. Kimizuka, K. Hagihara, Y. Kawamura, Acta Mater. 61, 6343 (2013) |
[1] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. |
[2] | Dongfang Lou, Mingda Zhang, Yuping Ren, Hongxiao Li, Gaowu Qin. Fabrication of Zn-0.5Mn-0.05 Mg Micro-Tube with Suitable Strength and Ductility for Vascular Stent Application [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 327-337. |
[3] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
[4] | Jian Zang, Jianrong Liu, Qingjiang Wang, Haibing Tan, Bohua Zhang, Xiaolin Dong, Zibo Zhao. Microstructure and Texture Evolution of Ti65 Alloy during Thermomechanical Processing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 107-120. |
[5] | Han Wang, Shijie Sun, Naicheng Sheng, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Effect of Carbon on the Microstructures and Stress Rupture Properties of a Polycrystalline Ni-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 151-163. |
[6] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. |
[7] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[8] | Zulai Li, Yingxing Zhang, Junlei Zhang, Xiang Chen, Suokun Chen, Lujian Cui, Shengjie Han. Microstructure Characteristics, Texture Evolution and Mechanical Properties of Al-Mg-Si-Mn-xCu Alloys via Extrusion and Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1501-1522. |
[9] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. |
[10] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[11] | Long Liu, Zijian Zhou, Jie Yu, Xinguang Wang, Chuanyong Cui, Rui Zhang, Yizhou Zhou, Xiaofeng Sun. Hot Deformation Behavior and Workability of a New Ni-W-Cr Superalloy for Molten Salt Reactors [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1453-1466. |
[12] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[13] | Qian Wang, Peng Yu, Haoran Lin, Chongzhi Guo, Xiaoqiang Hu. Joined AZ31B Magnesium Alloys with Ag Interlayer by Ultrasonic-Induced Transient Liquid Phase Bonding in Air [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1177-1185. |
[14] | Yujing Zhou, Siyi Peng, Yueling Guo, Xiaoxiang Wu, Changmeng Liu, Zhiming Li. Microstructure Modification and Ductility Improvement for TaMoNbZrTiAl Refractory High Entropy Alloys via Increasing Ti Content [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1186-1200. |
[15] | Chunyu Yue, Bowen Zheng, Ming Su, Yuxiang Wang, Xiaojiao Zuo, Yinxiao Wang, Xiaoguang Yuan. Effect of Y and Ce Micro-alloying on Microstructure and Hot Tearing of As-Cast Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 939-952. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||