Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (12): 1995-2007.DOI: 10.1007/s40195-024-01754-5
Xiang Fei1,2, Naicheng Sheng1(), Shijie Sun1, Shigang Fan1, Jinjiang Yu1, Guichen Hou1, Jinguo Li1, Yizhou Zhou1, Xiaofeng Sun1(
)
Received:
2024-04-22
Revised:
2024-06-04
Accepted:
2024-06-09
Online:
2024-12-10
Published:
2024-08-22
Contact:
Naicheng Sheng, Xiang Fei, Naicheng Sheng, Shijie Sun, Shigang Fan, Jinjiang Yu, Guichen Hou, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Multi-scale Study of the Formation and Evolution of M6C Carbides in High-Tungsten Superalloys[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 1995-2007.
Add to citation manager EndNote|Ris|BibTeX
Al | Ti | Hf | Co | Cr | Nb | W | C | Ni |
---|---|---|---|---|---|---|---|---|
5.9 | 0.8 | 0.9 | 7.8 | 5.1 | 1.8 | 15.8 | 0.11 | Bal. |
Table 1 Main chemical composition of K416B alloy (wt%)
Al | Ti | Hf | Co | Cr | Nb | W | C | Ni |
---|---|---|---|---|---|---|---|---|
5.9 | 0.8 | 0.9 | 7.8 | 5.1 | 1.8 | 15.8 | 0.11 | Bal. |
L−γ (°C) | MC (°C) | L−γ/γ′ (°C) | γ−γ′ (°C) | |
---|---|---|---|---|
Heating-up | 1376 | 1334 | 1291 | 1231 |
Cooling | 1361 | 1317 | 1274 | 1211 |
Table 2 Phase transition temperature of K416B alloy by DSC curve
L−γ (°C) | MC (°C) | L−γ/γ′ (°C) | γ−γ′ (°C) | |
---|---|---|---|---|
Heating-up | 1376 | 1334 | 1291 | 1231 |
Cooling | 1361 | 1317 | 1274 | 1211 |
C | Cr | Co | Ni | W | Nb | Hf | Ti | ||
---|---|---|---|---|---|---|---|---|---|
MC of as-cast | wt% | 12.07 | 1.31 | 0.79 | 6.45 | 35.55 | 27.95 | 7.62 | 8.26 |
at.% | 53.93 | 1.35 | 0.72 | 5.90 | 10.40 | 16.14 | 2.28 | 9.27 | |
MC of symbiosis | wt% | 10.11 | 0.68 | 0.89 | 7.49 | 20.49 | 33.70 | 20.89 | 5.74 |
at.% | 49.32 | 0.76 | 0.88 | 7.36 | 6.49 | 21.28 | 6.91 | 7.00 | |
M6C of symbiosis | wt% | 2.34 | 2.08 | 0.54 | 4.36 | 90.68 | |||
at.% | 24.00 | 4.93 | 1.14 | 9.14 | 60.79 | ||||
M6C of needle-like | wt% | 3.77 | 2.07 | 2.41 | 17.49 | 74.27 | |||
at.% | 28.63 | 3.62 | 3.72 | 27.15 | 36.88 |
Table 3 Composition of various carbides revealed by EDS
C | Cr | Co | Ni | W | Nb | Hf | Ti | ||
---|---|---|---|---|---|---|---|---|---|
MC of as-cast | wt% | 12.07 | 1.31 | 0.79 | 6.45 | 35.55 | 27.95 | 7.62 | 8.26 |
at.% | 53.93 | 1.35 | 0.72 | 5.90 | 10.40 | 16.14 | 2.28 | 9.27 | |
MC of symbiosis | wt% | 10.11 | 0.68 | 0.89 | 7.49 | 20.49 | 33.70 | 20.89 | 5.74 |
at.% | 49.32 | 0.76 | 0.88 | 7.36 | 6.49 | 21.28 | 6.91 | 7.00 | |
M6C of symbiosis | wt% | 2.34 | 2.08 | 0.54 | 4.36 | 90.68 | |||
at.% | 24.00 | 4.93 | 1.14 | 9.14 | 60.79 | ||||
M6C of needle-like | wt% | 3.77 | 2.07 | 2.41 | 17.49 | 74.27 | |||
at.% | 28.63 | 3.62 | 3.72 | 27.15 | 36.88 |
Fig. 7 a SEM and b-e TEM images of the needle-like M6C phase; f the magnification of area D in b; g, h SAED pattern at area B and C in b; i SAED pattern at two-phase interface
Temperature (°C) | Tensile properties | Stress rupture life (h, 975 ℃/235 MPa) | ||
---|---|---|---|---|
σm (MPa) | σ0.2 (MPa) | A (%) | ||
1255 | 1070 ± 10 | 837.5 ± 15 | 5.05 ± 1.45 | 45.84 ± 2.04 |
1260 | 972.5 ± 17 | 797.5 ± 8 | 5.05 ± 1.45 | 61.22 ± 8.76 |
1270 | 840 ± 0 | 760 ± 5 | 1.75 ± 0.45 | 50.19 ± 7.33 |
1280 | 770 ± 55 | 1.23 ± 0.3 |
Table 4 Tensile properties at room temperature and stress rupture life at 975 ℃/235 MPa of different solution temperatures
Temperature (°C) | Tensile properties | Stress rupture life (h, 975 ℃/235 MPa) | ||
---|---|---|---|---|
σm (MPa) | σ0.2 (MPa) | A (%) | ||
1255 | 1070 ± 10 | 837.5 ± 15 | 5.05 ± 1.45 | 45.84 ± 2.04 |
1260 | 972.5 ± 17 | 797.5 ± 8 | 5.05 ± 1.45 | 61.22 ± 8.76 |
1270 | 840 ± 0 | 760 ± 5 | 1.75 ± 0.45 | 50.19 ± 7.33 |
1280 | 770 ± 55 | 1.23 ± 0.3 |
Fig. 8 Phase distribution diagram and KAM diagram of longitudinal section of tensile fracture after solution treatment at different temperatures: a, e, i 1255 °C; b, f, j 1260 °C; c, g, k 1270 °C; d, h, l 1280 °C
Empirical formulas | Types of carbides |
---|---|
Cr. at.%/(Cr + Mo + 0.7 W) at.% < 0.72 | M6C carbide |
Cr. at.%/(Cr + Mo + 0.7 W) at.% > 0.82 | M23C6 carbide |
0.72 < Cr. at.%/(Cr + Mo + 0.7 W) at.% < 0.82 | Types of carbides change with heat treatment |
Table 5 Effect of element content on the type of carbides
Empirical formulas | Types of carbides |
---|---|
Cr. at.%/(Cr + Mo + 0.7 W) at.% < 0.72 | M6C carbide |
Cr. at.%/(Cr + Mo + 0.7 W) at.% > 0.82 | M23C6 carbide |
0.72 < Cr. at.%/(Cr + Mo + 0.7 W) at.% < 0.82 | Types of carbides change with heat treatment |
D0 (m2 s−1) | Qm Ni (kJ mol−1) | |
---|---|---|
Ni | 1.9 × 10-4 | 284 |
Co | 7.5 × 10-5 | 285.1 |
Cr | 3 × 10-6 | 170.7 |
W | 8.0 × 10-6 | 264 |
Nb | 8.8 × 10-5 | 251 |
Al | 7.52 × 10-4 | 284 |
Ti | 8.6 × 10-5 | 257 |
Table 6 Diffusion constant and diffusion activation energy of the alloy elements in Ni [29,30,31,32]
D0 (m2 s−1) | Qm Ni (kJ mol−1) | |
---|---|---|
Ni | 1.9 × 10-4 | 284 |
Co | 7.5 × 10-5 | 285.1 |
Cr | 3 × 10-6 | 170.7 |
W | 8.0 × 10-6 | 264 |
Nb | 8.8 × 10-5 | 251 |
Al | 7.52 × 10-4 | 284 |
Ti | 8.6 × 10-5 | 257 |
Fig. 9 Growth mechanism diagram of needle-like M6C carbides: a distribution of γ′ phase; b nucleation of M6C carbides; c a flat interface between M6C and matrix; d non-flat interface between M6C and matrix
[1] | T.M. Pollock, S. Tin, J. Propuls,Power 22, 361 (2006) |
[2] | I.S. Kim, B.G. Choi, J.E. Jung, J. Do, C.Y. Jo, Mater. Charact. 106, 375 (2015) |
[3] | B. Yin, G. Xie, X. Jiang, S. Zhang, W. Zheng, L. Lou, Acta Metall. Sin. -Engl. Lett. 33, 1433 (2020) |
[4] | R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, C.M.F. Rae, Acta Mater. 47, 3367 (1999) |
[5] | W. Song, X.G. Wang, J.G. Li, L.H. Ye, G.C. Hou, Y.H. Yang, J.L. Liu, J.D. Liu, W.L. Pei, Y.Z. Zhou, X.F. Sun, Mater. Sci. Eng. A 772, 138646 (2020) |
[6] | Y. Han, X. Xue, T. Zhang, R. Hu, J. Li, Mater. Sci. Eng. A 667, 391 (2016) |
[7] | Q. Li, J. Xie, J.J. Yu, L.D. Shu, G.C. Hou, X.F. Sun, Y.Z. Zhou, J. Alloys Compd. 854, 156027 (2021) |
[8] | Q. Li, J. Xie, J.J. Yu, N.C. Sheng, D.L. Shu, G.C. Hou, J.G. Li, X.F. Sun, Y.Z. Zhou, Mater. Today Commun. 29, 102916 (2021) |
[9] | S.G. Zhou, N.C. Sheng, S.J. Sun, S.G. Fan, J.J. Yu, G.C. Hou, J.G. Li, Y.Z. Zhou, X.F. Sun, Met. Mater. Int. 29, 27 (2023) |
[10] | J. Xie, J.J. Yu, X.F. Sun, T. Jin, Y. Sun, Acta Metall. Sin. -Engl. Lett. 51, 458 (2015) |
[11] | C.J. Li, Z.J. Yuan, Y.F. Fan, S.Y. He, W.D. Xuan, X. Li, Y.B. Zhong, Z.M. Ren, J. Mater. Process. Technol. 246, 176 (2017) |
[12] | P. Wangyao, B. Adchariyapluk, P. Chantrapanichagul, J. Charoenyingwattana, P. Promchan, M.S.N. Ayudhaya, S. Pongsugitwat, 10th Thailand. Int. Metall. Conf. 5, 9399 (2018) |
[13] | L.R. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Lett. 57, 4540 (2003) |
[14] | M.Q. Ou, Y.C. Ma, K.L. Hou, K. Liu, J. Alloys Compd. 916, 165473 (2022) |
[15] | B. Djerdjare, S. Lebaili, S. Lay, Mater. Sci. Eng. A 475, 336 (2008) |
[16] | S. Chomette, J.M. Gentzbittel, B. Viguier, J. Nucl. Mater. 399, 266 (2010) |
[17] | G.V.P. Reddy, P. Harini, R. Sandhya, K.B.S. Rao, R.K. Paretkar, Mater. Sci. Eng. A 527, 3848 (2010) |
[18] | E. Fleischmann, M.K. Miller, E. Affeldt, U. Glatzel, Acta Mater. 87, 350 (2015) |
[19] | G.B. Viswanathan, R. Shi, A. Genc, V.A. Vorontsov, L. Kovarik, C.M.F. Rae, M.J. Mills, Scr. Mater. 94, 5 (2015) |
[20] | L. Zheng, C.Q. Gu, Y.R. Zheng, Scr. Mater. 50, 435 (2004) |
[21] | M.Q. Huang, Z.J. Zhou, C.Y. Cui, R. Zhang, Z.W. Shi, X.G. Wang, Y.Z. Zhou, X.F. Sun, Mater. Charact. 204, 113211 (2023) |
[22] | X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, J.S. Hou, H.Q. Ye, Mater. Sci. Eng. A 485, 74 (2008) |
[23] | T.J. Zhou, H.S. Ding, X.P. Ma, W. Feng, H.B. Zhao, Y. Meng, H.X. Zhang, Y.M. Lv, Mater. Sci. Eng. A 725, 299 (2018) |
[24] | G.H. Bai, J.S. Li, R. Hu, T.B. Zhang, H.C. Kou, H.Z. Fu, Mater. Sci. Eng. A 528, 2339 (2011) |
[25] | X.Z. Qin, J.Q. Wang, S.H. Cheng, Y.S. Wu, L.Z. Zhou, Mater. Sci. Eng. A 881, 145416 (2023) |
[26] | W. Sun, X.Z. Qin, Y.A. Guo, J.T. Guo, L.H. Lou, L.Z. Zhou, Acta Metall. Sin. -Engl. Lett. 50, 744 (2014) |
[27] | Z.H. Tan, L. Yang, X.G. Wang, Y.L. Du, L.H. Ye, G.C. Hou, Y.H. Yang, J.L. Liu, J.D. Liu, J.L. Li, Y.Z. Zhou, X.F. Sun, Acta Metall. Sin. -Engl. Lett. 33, 731 (2020) |
[28] | X.K. Fan, F.Q. Li, L. Liu, H.C. Cui, F.G. Lu, X.H. Tang, Acta Metall. Sin. -Engl. Lett. 33, 561 (2020) |
[29] | X. Xiao, C. Zeng, J.S. Hou, X.Z. Qin, J.T. Guo, L.Z. Zhou, Acta Metall. Sin. -Engl. Lett. 50, 1031 (2014) |
[30] | S. Hamar-Thibault, M. Durand-Charre, B. Andries, Metall. Trans. A 13, 545 (1982) |
[31] | J.X. Yang, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 465, 100 (2007) |
[32] |
T. Liu, J.S. Dong, L. Wang, Z.J. Li, X.T. Zhou, L.H. Lou, J. Zhang, J. Mater. Sci. Technol. 31, 269 (2015)
DOI |
[33] | M.S.A. Karunaratne, P. Carter, R.C. Reed, Mater. Sci. Eng. A 281, 229 (2000) |
[34] | M.S.A. Karunaratne, R.C. Reed, Acta Mater. 51, 2905 (2003) |
[35] | A. Janotti, M. Krčmar, C.L. Fu, R.C. Reed, Phys. Rev. Lett. 92, 085901 (2004) |
[36] | Z. Zhu, H. Basoalto, N. Warnken, R.C. Reed, Acta Mater. 60, 4888 (2012) |
[37] | M.K. Chen, J. Xie, D.L. Shu, G.C. Hou, S.L. Xun, J.J. Yu, L.R. Liu, X.F. Sun, Y.Z. Zhou, Acta Metall. Sin. -Engl. Lett. 33, 1699 (2020) |
[38] | L.R. Liu, T. Jin, N.R. Zhao, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 361, 191 (2003) |
[39] | L.X. Li, X.S. Gong, C.S. Wang, Y.S. Wu, H.Y. Yu, H.J. Su, L.Z. Zhou, Acta Metall. Sin. -Engl. Lett. 34, 872 (2021) |
[40] |
S.Y. Wang, Y. Sun, X.Y. Hou, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Mater. Lett. 246, 190 (2019)
DOI |
[41] | L. Jiang, X.X. Ye, C.Y. Cui, H.F. Huang, B. Leng, Z.J. Li, X.T. Zhou, Mater. Sci. Eng. A 668, 137 (2016) |
[42] | T. Liu, J.S. Dong, G. Xie, L. Wang, L.H. Lou, Mater. Sci. Eng. A 656, 75 (2016) |
[43] | W.M. Gui, H.Y. Zhang, M. Yang, T. Jin, X.F. Sun, Q. Zheng, J. Alloys Compd. 728, 145 (2017) |
[44] | Z.K. Zhang, Z.F. Yue, J. Alloys Compd. 746, 84 (2018) |
[45] | W.S. Xia, X.B. Zhao, L. Yue, Z. Zhang, J. Alloys Compd. 819, 152954 (2020) |
[46] | X.Y. Wang, J.J. Wang, C.J. Zhang, W.W. Tong, B. Jiang, G.X. Lu, Z.X. Wen, T. Feng, Rare Met. 40, 2892 (2021) |
[1] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[2] | Kejie Tan, Jinli Xie, Hailong Qin, Bin Xu, Guichen Hou, Jinguo Li, Zhongnan Bi, Ji Zhang. Effects of Co and Nb on the Crack of Additive Manufacturing Nickel-Based Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1601-1610. |
[3] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[4] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[5] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
[6] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[7] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[8] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[9] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[10] | Iman Ansarian, Reza Taghiabadi, Saeid Amini, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1034-1046. |
[11] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[12] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
[13] | Zhenghong Liu, Zhigang Wu, Ying Han, Xiaolei Song, Guoqing Zu, Weiwei Zhu, Xu Ran. Combination of High Yield Strength and Improved Ductility of 21Cr Lean Duplex Stainless Steel by Tailoring Cold Deformation and Low-Temperature Short-Term Aging [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 695-702. |
[14] | Yan-Hui Wang, Hua-Qiang Sun, Wen-Jing Feng, Lei-Jie Zhao, Xiang Chen, Qing-An Chen, Hai-Tao Sun, Jian-Jun Wang, Zhi-Nan Yang. Notably Accelerated Nano-Bainite Transformation via Increasing Undissolved Carbides Content on GCr15Si1Mo Bearing Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 703-712. |
[15] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||