Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (4): 739-748.DOI: 10.1007/s40195-023-01647-z
Previous Articles Next Articles
Wenting Wang1,2, Jingjun Xu1(
), Jun Zuo1, Ke Ma1, Yang Li1,2, Guangqi He1, Meishuan Li1
Received:2023-09-25
Revised:2023-11-06
Accepted:2023-11-14
Online:2024-04-10
Published:2024-01-28
Contact:
Jingjun Xu, jjxu@imr.ac.cn
Wenting Wang, Jingjun Xu, Jun Zuo, Ke Ma, Yang Li, Guangqi He, Meishuan Li. Oxidation Resistance of In Situ Reaction/Hot Pressing Synthesized Ti2AlC-20% TiB2 Composite at 600-900 °C in Air[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 739-748.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Fitting curves of oxidation kinetics for a Ti2AlC and b Ti2AlC-20TiB2 composite at 600-900 °C in air. The inset in a is the fitting curve of the 600 °C
| Oxidation temperature | |||||
|---|---|---|---|---|---|
| 600 °C | 700 °C | 800 °C | 900 °C | ||
| Ti2AlC-20TiB2 | k | 0.0043 | 0.0098 | 0.0124 | 0.0392 |
| t0 | 0.0063 | 0.3005 | 0.3446 | 1.110 | |
| R2 (%) | 97.44 | 98.29 | 97.75 | 99.96 | |
| Oxidation law | Logarithmic | ||||
| Ti2AlC | k | 6.5 × 10-5 | 5.7 × 10-6 | 2.8 × 10-5 | 5.9 × 10-3 |
| R2 (%) | 93.53 | 92.22 | 98.57 | 96.3 | |
| Oxidation law | Parabolic | Cubic | |||
Table 1 Values obtained by fitting the curves in Fig. 1 of k, t0 and R2 (correlation coefficient)
| Oxidation temperature | |||||
|---|---|---|---|---|---|
| 600 °C | 700 °C | 800 °C | 900 °C | ||
| Ti2AlC-20TiB2 | k | 0.0043 | 0.0098 | 0.0124 | 0.0392 |
| t0 | 0.0063 | 0.3005 | 0.3446 | 1.110 | |
| R2 (%) | 97.44 | 98.29 | 97.75 | 99.96 | |
| Oxidation law | Logarithmic | ||||
| Ti2AlC | k | 6.5 × 10-5 | 5.7 × 10-6 | 2.8 × 10-5 | 5.9 × 10-3 |
| R2 (%) | 93.53 | 92.22 | 98.57 | 96.3 | |
| Oxidation law | Parabolic | Cubic | |||
Fig. 5 Surface morphologies of Ti2AlC oxidized in air for 20 h at a, b 600 °C, c, d 700 °C, e, f 800 °C and g 900 °C, h-j EDS element mappings of O, Al and Ti of g
Fig. 6 Surface morphologies of Ti2AlC-20TiB2 composite oxidized in air for 20 h at a, b 600 °C, c, d 700 °C, e, f 800 °C and g 900 °C, h-j EDS element mappings of O, Al and Ti of g
Fig. 8 Cross sections and EDS element mappings of O, Al and Ti of Ti2AlC-20TiB2 composite oxidized in air for 20 h at a 600 °C, b 700 °C, c 800 °C and d 900 °C
Fig. 9 a TEM bright field image and TEM-EDS element mappings of cross section, b, d TEM observation area and c, e SAED images of the red circle in the b, d
| [1] |
V. Nowotny, Prog. Solid State Chem. 5, 27 (1971)
DOI URL |
| [2] |
M.W. Barsoum, Prog. Solid State Chem. 28, 201 (2000)
DOI URL |
| [3] |
Z.M. Sun, Int. Mater. Rev. 56, 143 (2011)
DOI URL |
| [4] |
M.A. Ali, M.M. Hossain, M.M. Uddin, M.A. Hossain, A.K.M.A. Islam, S.H. Naqib, J. Mater. Res. Technol. 11, 1000 (2021)
DOI URL |
| [5] |
M.W. Barsoum, M. Radovic, Ann. Rev. Mater. Res. 41, 195 (2011)
DOI URL |
| [6] | M. Radovic, M.W. Barsoum, Am. Ceram. Soc. Bull. 92, 20 (2013) |
| [7] |
M. Radovic, M.W. Barsoum, A. Ganguly, T. Zhen, P. Finkel, S.R. Kalidindi, E. Lara-Curzio, Acta Mater. 54, 2757 (2006)
DOI URL |
| [8] |
W. Jeitschko, H. Nowotny, F. Benesovsky, Mon. Chem. 94, 672 (1963)
DOI URL |
| [9] |
J.W. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K.B. Park. M.P. Brady, M. Radovic, T. El-Raghy, Y.H. Sohn, Oxid. Met. 68, 97 (2007)
DOI URL |
| [10] |
H.P. Zhu, X.K. Qian, H.Y. Wu, Y.C. Song, X.D. He, Y. Zhou, Int. J. Appl. Ceram. Technol. 12, 403 (2015)
DOI URL |
| [11] |
X.H. Wang, Y.C. Zhou, Oxid. Met. 59, 303 (2003)
DOI URL |
| [12] |
Z.J. Lin, M.S. Li, J.Y. Wang, Y.C. Zhou, Acta Mater. 55, 6182 (2007)
DOI URL |
| [13] |
X.K. Qian, X.D. He, Y.B. Li, Y. Sun, H. Li, D.L. Xu, Corros. Sci. 53, 290 (2011)
DOI URL |
| [14] |
X.J. Li, S.H. Wang, G.X. Wu, D.P. Zhou, J.B. Pu, M. Yu, Q. Wang, Q.S. Sun, Ceram. Int. 48, 26618 (2022)
DOI URL |
| [15] |
D.J. Tallman, B. Anasori, M.W. Barsoum, Mater. Res. Lett. 1, 115 (2013)
DOI URL |
| [16] |
B.R. Maier, B.L. Garcia-Diaz, B. Hauch, L.C. Olson, R.L. Sindelar, K. Sridharan, J. Nucl. Mater. 466, 712 (2015)
DOI URL |
| [17] |
X. Xie, R. Yang, Y.Y. Cui, Q. Jia, C.G. Bai, J. Mater. Sci. Technol. 38, 86 (2020)
DOI |
| [18] | T.T. Ai, Acta Metall. Sin. -Engl. Lett. 21, 437 (2008) |
| [19] | J. Wu, Z.T. Yang, H.Z. Cui, N. Wei, X.J. Song, Acta Metall. Sin. -Engl. Lett. 30, 1145 (2017) |
| [20] |
X.H. Tong, T. Okano, T. Iseki, T. Yano, J. Mater. Sci. 30, 3087 (1995)
DOI URL |
| [21] |
S. Konoplyuk, T. Abe, T. Uchimoto, T. Takagi, J. Mater. Sci. 40, 3409(2005)
DOI URL |
| [22] |
J.F. Zhu, L. Ye, L.H. He, Mater. Sci. Eng. 547, 6 (2012)
DOI URL |
| [23] |
F. Wang, B.B. Liu, J.F. Zhu, Y.L. Li, Mater. Sci. Forum 658, 169 (2010)
DOI URL |
| [24] |
J.X. Chen, Y.C. Zhou, Scr. Mater. 50, 897 (2004)
DOI URL |
| [25] |
Z. Sun, Y. Zhou, M. Li, Acta Mater. 49, 4347 (2001)
DOI URL |
| [26] |
C. Li, Y.H. Qian, C.L. Ma, S.M. Wang, M.S. Li, J. Mater. Sci. Technol. 35, 432 (2019)
DOI URL |
| [27] |
C. Li, M.S. Li, Y.C. Zhou, J. Zhang, L.F. He, J. Am. Ceram. Soc. 90, 3615 (2007)
DOI URL |
| [28] |
M.S. Li, C. Li, J.J. Li, Y.C. Zhou, J. Am. Ceram. Soc. 93, 554 (2010)
DOI URL |
| [29] |
X.H. Wang, Y.C. Zhou, J. Mater. Res. 17, 2974 (2002)
DOI URL |
| [30] |
Z. Zhang, D.M.Y. Lai, S.H. Lim, J.W. Chai, S.J. Wang, H.M. Jin, J.S. Pan, Corros. Sci. 138, 266 (2018)
DOI URL |
| [31] |
Z. Zhang, S.H. Lim, D.M.Y. Lai, S.Y. Tan, X.Q. Koh, J.W. Chai, S.J. Wang, H.M. Jin, J.S. Pan, J. Eur. Ceram. Soc. 37, 43 (2017)
DOI URL |
| [32] |
M. Sundberg, G. Malmqvist, A. Magnusson, T. El-Raghy, Ceram. Int. 30, 1899 (2004)
DOI URL |
| [33] |
B.P. Laskova, L. Kavan, M. Zukalova, K. Mocek, O. Frank, Mon. Chem. 147, 951(2016)
DOI URL |
| [34] |
S.P.S. Porto, P.A. Fleury, T.C. Damen, Phys. Rev. 154, 522 (1967)
DOI URL |
| [35] |
Q.F. Zhou, S.H. Wu, Q.Q. Zhang, J.X. Zhang, J. Chen, W.H. Zhang, Chin. Phys. Lett. 14, 306 (1997)
DOI URL |
| [36] |
G. Chen, J. Chen, Z.K. Song, C. Srinivasakannan, J.H. Peng, J. Alloy. Compd. 585, 75 (2014)
DOI URL |
| [37] |
G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers, J.M. Seakins, J. Raman Spectrosc. 26, 57 (1995)
DOI URL |
| [38] |
T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978)
DOI URL |
| [39] |
Y. Zhang, W. Wu, K. Zhang, C.H. Liu, A.F. Yu, M.Z. Peng, J.Y. Zhai, Phys. Chem. Chem. Phys. 18, 32178 (2016)
PMID |
| [40] |
W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D Appl. Phys. 33, 912 (2000)
DOI URL |
| [41] |
G.E. Walrafen, S.R. Samanta, P.N. Krishnan J. Chem. Phys. 72, 113 (1980)
DOI URL |
| [42] |
J.P. Bronswijk, E. Strijks, J. Non-Cryst Solids 24, 145 (1977)
DOI URL |
| [43] |
S. Shimada, M. Kozeki, J. Mater. Sci. 27, 1869 (1992)
DOI URL |
| [44] |
Z. Zhang, H.M. Jin, D.L.M. Ying, J.W. Chai, S.J. Wang, J.S. Pan, Corros. Sci. 164, 108349 (2020)
DOI URL |
| [45] | C. Wagner, Z. Phys. Chemie 21, 25 (1933) |
| [46] |
S. Dorri, J. Palisaitis, G. Greczynski, I. Petrov, J. Birch, L. Hultman, B. Bakhit, Corros. Sci. 206, 110493 (2022)
DOI URL |
| [47] |
S. Badie, A. Dash, Y.J. Sohn, R. Vassen, O. Guillon, J. Gonzalez-Julian, J. Am. Ceram. Soc. 104, 1669 (2021)
DOI URL |
| [48] |
Q. Song, Z.H. Zhang, Ceram. Int. 48, 25458 (2022)
DOI URL |
| [49] | S. Castanie, F.O. Mear, R. Podor, H. Suhonen, L. Montagne, 2015 J. Am. Ceram. Soc. 99, 849 (2015) |
| [50] | S.X. Wang, G.Q. Wang, H.X. Wang, J.S. Jia, L.S. Cui, China Pet. Process. Petrochem. T. 42, 1312 (2013) |
| [51] |
J. Yang, X.X. Xue, T. Jiang, P. Xie, M. Wang, Ceram. Int. 32, 533 (2006)
DOI URL |
| [52] |
G. Zeng, M.W. Li, J.C. Han, X.D. He, W.Z. Li, Mater. Sci. Eng. A 465, 255 (2007)
DOI URL |
| [1] | Khalil Rehman, Naicheng Sheng, Shigang Fan, Shijie Sun, Guicheng Hou, Yizhou Zhou, Xiaofeng Sun. Improved Spallation Resistance of the Oxide Scale by Hf/Y Co-doping in Ni-Based Superalloy at High Temperature [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1744-1758. |
| [2] | Honglei ZHANG,Guocai ZHU,Hong YAN,Yuna ZHAO,Fangpu CHEN,Wenjuan WANG. An investigation on stability of biomass reduced manganese dioxide ore [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(6): 435-442. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
