Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (11): 1791-1804.DOI: 10.1007/s40195-023-01591-y
Previous Articles Next Articles
Wei-Peng Chen1, Hua Hou1,3, Yun-Tao Zhang1, Wei Liu1, Yu-Hong Zhao1,2,4()
Received:
2023-04-27
Revised:
2023-06-12
Accepted:
2023-07-01
Online:
2023-11-10
Published:
2023-09-26
Contact:
Yu-Hong Zhao, zhaoyuhong@nuc.edu.cn
Wei-Peng Chen, Hua Hou, Yun-Tao Zhang, Wei Liu, Yu-Hong Zhao. Phase-Field Lattice-Boltzmann Study for α-Mg Dendrite Growth of Mg-5wt%Zn Alloy with Forced Convection[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1791-1804.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Thermal field distribution in α-Mg dendrite growth of Mg-5wt%Zn alloy with forced convection: a $t = 1000\Delta t$, b $t = 1500\Delta t$, c $t = 2000\Delta t$, d $t = 2500\Delta t$, e $t = 3000\Delta t$, f $t = 3500\Delta t$, g $t = 4000\Delta t$, h $t = 4500\Delta t$, i $t = 5000\Delta t$
Fig. 2 Solute field distribution in α-Mg dendrite growth of Mg-5wt%Zn alloy with forced convection: a $t = 1000\Delta t$, b $t = 1500\Delta t$, c $t = 2000\Delta t$, d $t = 2500\Delta t$, e $t = 3000\Delta t$, f $t = 3500\Delta t$, g $t = 4000\Delta t$, h $t = 4500\Delta t$, i $t = 5000\Delta t$
Fig. 3 Thermal field distribution a $t = 2000\Delta t$, b $t = 4500\Delta t$, c $t = 7000\Delta t$ and solute field distribution d $t = 2000\Delta t$, e $t = 4500\Delta t$, f $t = 7000\Delta t$ in α-Mg dendrite growth of Mg-5wt%Zn alloy on $\left\{ {0001} \right\}$ crystal plane with forced convection
Fig. 4 Comparison of the thermal and solute distribution along the central axis (white dotted line) of α-Mg dendrite growth on {0001} crystal plane with and without forced convection: a, d $t = 2000\Delta t$, b, e $t = 4500\Delta t$, c, f $t = 7000\Delta t$
Fig. 5 Comparison of the thermal and solute distribution along the upstream dendrite tips perpendicular line (white dotted line) of α-Mg dendrite growth on {0001} crystal plane with and without forced convection: a, d $t = 2000\Delta t$, b, e $t = 4500\Delta t$, c, f $t = 7000\Delta t$
Fig. 6 Comparison of the thermal and solute distribution along the downstream dendrite tips perpendicular line (white dotted line) of α-Mg dendrite growth on {0001} crystal plane with and without forced convection: a, d $t = 2000\Delta t$, b, e $t = 4500\Delta t$, c, f $t = 7000\Delta t$
Fig. 7 Comparison of the dendrite tip temperature a and dendrite tip concentration b of α-Mg dendrite growth on {0001} crystal plane with and without forced convection
Fig. 8 Thermal field distribution a–e $t = 9000\Delta t$ and solute field distribution f–j $t = 9000\Delta t$ in α-Mg dendrite growth of Mg-5wt%Zn alloy on $\left\{ {0001} \right\}$ crystal plane with different flow velocities. The flow velocities from left to right are $v_{x} = 0.00$, $v_{x} = 0.20$, $v_{x} = 0.40$, $v_{x} = 0.60$, and $v_{x} = 0.80$, respectively
Fig. 9 Change in upstream dendrite tip velocities a and tip radius c, and downstream dendrite tip velocities b and tip radius d in α-Mg dendrite growth of Mg-5wt%Zn alloy on $\left\{ {0001} \right\}$ crystal plane with different flow velocities
Fig. 10 Comparison between the simulation and experimental results: a morphology of α-Mg dendrite of Mg-5wt%Zn alloy with forced convection at $t = 25000\Delta t$, b optical micrographs of as-cast Mg-5wt%Zn alloy on the longitudinal section under air cooling
[1] | Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W.A. Curtin, Science 359, 447 (2018) |
[2] |
J. Kang, J. Park, K. Song, C. Oh, O. Shchyglo, I. Steinbach, J. Magnes. Alloys 10, 1672 (2022)
DOI URL |
[3] |
W. Liu, Y. Zhao, Y. Zhang, C. Shuai, L. Chen, Z. Huang, H. Hou, Int. J. Plast. 164, 103573 (2023)
DOI URL |
[4] | S. Xiong, J. Du, Z. Guo, M. Yang, M. Wu, C. Bi, Y. Cao, Acta Metall. Sin. 54, 174 (2018) |
[5] | J. Du, Z. Guo, A. Zhang, M. Yang, M. Li, S. Xiong, Sci. Rep. UK 7, 13600 (2017) |
[6] |
Y. Mitsuyama, T. Takaki, S. Sakane, Y. Shibuta, M. Ohno, Acta Mater. 188, 282 (2020)
DOI URL |
[7] | Y. Wang, S. Shuai, C. Huang, T. Jing, C. Chen, T. Hu, J. Wang, Z. Ren, Acta Metall. Sin. -Engl. Lett. 35, 177 (2022) |
[8] |
Y. Wang, S. Jia, M. Wei, L. Peng, Y. Wu, Y. Ji, L.Q. Chen, X. Liu, J. Alloys Compd. 815, 152385 (2020)
DOI URL |
[9] |
Y. Wang, S. Jia, M. Wei, L. Peng, Y. Wu, X. Liu, J. Magnes. Alloys 8, 396 (2020)
DOI URL |
[10] |
D. Casari, W.U. Mirihanage, K.V. Falch, I.G. Ringdalen, J. Friis, R. Schmid-Fetzer, D. Zhao, Y. Li, W.H. Sillekens, R.H. Mathiesen, Acta Mater. 116, 177 (2016)
DOI URL |
[11] |
E. Guo, A.B. Phillion, B. Cai, S. Shuai, D. Kazantsev, T. Jing, P.D. Lee, Acta Mater. 123, 373 (2017)
DOI URL |
[12] |
E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A.B. Phillion, T. Jing, W. Li, P.D. Lee, Acta Mater. 152, 127 (2018)
DOI URL |
[13] |
T. Xin, Y. Zhao, R. Mahjoub, J. Jiang, A. Yadav, K. Nomoto, R. Niu, S. Tang, F. Ji, Z. Quadir, D. Miskovic, J. Daniels, W. Xu, X. Liao, L.Q. Chen, K. Hagihara, X. Li, S. Ringer, M. Ferry, Sci. Adv. 7, eabf3039 (2021)
DOI URL |
[14] |
Y. Zhao, J. Mater. Res. Technol. 21, 546 (2022)
DOI URL |
[15] |
T. Xin, S. Tang, F. Ji, L. Cui, B. He, X. Lin, X. Tian, H. Hou, Y. Zhao, M. Ferry, Acta Mater. 239, 118248 (2022)
DOI URL |
[16] |
X. Tian, Y. Zhao, T. Gu, Y. Guo, F. Xu, H. Hou, Mater. Sci. Eng. A Struct. 849, 143485 (2022)
DOI URL |
[17] |
Y. Zhao, NPJ Comput. Mater. 9, 94 (2023)
DOI |
[18] |
L.Q. Chen, Y. Zhao, Prog. Mater. Sci. 124, 100868 (2022)
DOI URL |
[19] |
Y. Zhao, Front. Mater. 10, 1145833 (2023)
DOI URL |
[20] |
W. Chen, Y. Zhao, S. Yang, D. Zhang, H. Hou, Adv. Compos. Hybrid Mater. 4, 371 (2021)
DOI |
[21] |
Y. Zhao, B. Zhang, H. Hou, W. Chen, M. Wang, J. Mater. Sci. Technol. 35, 1044 (2019)
DOI URL |
[22] |
S. Yang, J. Zhong, J. Wang, J. Gao, Q. Li, L. Zhang, J. Mater. Sci. Technol. 133, 111 (2023)
DOI URL |
[23] | Y. Wang, S. Chu, Z. Wang, J. Li, J. Wang, Acta Metall. Sin. -Engl. Lett. 35, 425 (2022) |
[24] |
R. Samanta, H. Chattopadhyay, C. Guha, Comput. Mater. Sci. 206, 111288 (2022)
DOI URL |
[25] |
S. Sakane, T. Aoki, T. Takaki, Comput. Mater. Sci. 211, 111507 (2022)
DOI URL |
[26] |
S. Mao, X. Wang, D. Sun, J. Wang, Comput. Mater. Sci. 204, 111149 (2022)
DOI URL |
[27] |
X. Liu, F. Tang, W. Zhao, J. Cai, Y. Wei, Comput. Mater. Sci. 204, 111182 (2022)
DOI URL |
[28] |
N. Wang, D. Korba, Z. Liu, R. Prabhu, M.W. Priddy, S. Yang, L. Chen, L. Li, Comput. Meth. Appl. Mech. Eng. 385, 114026 (2021)
DOI URL |
[29] |
J.C. Ramirez, C. Beckermann, A. Karma, H.J. Diepers, Phys. Rev. E 69, 051607 (2004)
DOI URL |
[30] |
M. Ohno, K. Matsuura, Phys. Rev. E 79, 031603 (2009)
DOI URL |
[31] |
K. Ji, E. Dorari, A.J. Clarke, A. Karma, Phys. Rev. Lett. 130, 026203 (2023)
DOI URL |
[32] |
J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu, S. Xiong, Acta Mater. 161, 35 (2018)
DOI URL |
[33] |
T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, T. Aoki, Acta Mater. 164, 237 (2019)
DOI URL |
[34] |
A. Zhang, Z. Guo, B. Jiang, J. Du, C. Wang, G. Huang, D. Zhang, F. Liu, S. Xiong, F. Pan, Acta Mater. 214, 117005 (2021)
DOI URL |
[35] |
W. Chen, H. Hou, Y. Zhang, W. Liu, Y. Zhao, J. Mater. Res. Technol. 24, 8401 (2023)
DOI URL |
[36] |
Y. Zhao, K. Liu, H. Hou, L.Q. Chen, Mater. Des. 216, 110555 (2022)
DOI URL |
[37] | R. Chen, Q. Xu, B. Liu, Acta Metall. Sin. -Engl. Lett. 28, 173 (2015) |
[38] |
Y. Guo, S. Luo, W. Wang, M. Zhu, J. Mater. Res. Technol. 17, 2059 (2022)
DOI URL |
[39] |
T. Gong, Y. Chen, D. Li, Y. Cao, P. Fu, Int. J. Heat Mass Transf. 135, 262 (2019)
DOI URL |
[1] | Yuhong Zhao, Hui Xing, Lijun Zhang, Houbing Huang, Dongke Sun, Xianglei Dong, Yongxing Shen, Jincheng Wang. Development of Phase-Field Modeling in Materials Science in China: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1749-1775. |
[2] | Hong-Min Jia, Xiao-Hui Feng, Yuan-Sheng Yang. Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1185-1191. |
[3] | Rui Chen, Qing-Yan Xu, Bai-Cheng Liu. Simulation of the Dendrite Morphology and Microsegregation in Solidification of Al-Cu-Mg Aluminum Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 173-181. |
[4] | Tan He, Rui Hu, Jun Wang, Jie-Ren Yang, Jin-Shan Li. Effects of β-Dendrite Growth Velocity on β → α Transformation of Hypoperitectic Ti-46Al-7Nb Alloy [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 58-63. |
[5] | Liu Shaojun, Yang Guangyu, Jie Wanqi. Microstructure, Microsegregation, and Mechanical Properties of Directional Solidified Mg-3.0Nd-1.5Gd Alloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1134-1143. |
[6] | Xingguo ZHANG, Qian ZHAO,Jianshe GUO, Qingyuan XING, Liang DENG, Xiaoguang HOU, Canfeng FANG. Effects of Spiral Magnetic Field on Structures Transformation and Macrosegregation of Sn-Pb Alloy [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(3): 345-351. |
[7] | Yutian DING, Xunfeng YUAN, Tingbiao GUO, Yong HU. Phase field simulation of dendrite growth under convection [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(2): 121-128. |
[8] | Yutuo ZHANG,Chengzhi WANG,Dianzhong LI,Yiyi LI. Phase field modeling of dendrite growth [J]. Acta Metallurgica Sinica (English Letters), 2009, 22(3): 197-201. |
[9] | M.E Li , G.C. Yang. Growth Morphologies of a Binary Alloy with Low Anisotropy in Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2007, 20(4): 258-264 . |
[10] | X.Y. Lu; C.D. Cao and B.B. Wei(Laboratory of Materials Science in Space, Department of Applied Physics, Northwestern PolytechnicalUniversity, Xi'an 710072, China)Manuscript received in revised form 6 October 1998. METASTABLE PHASE SEPARATION OF Fe_(50)Cu(50) HYPOPERITECTIC ALLOY UNDER SPACE SIMULATION CONDITIONS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(2): 198-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||