Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (3): 439-455.DOI: 10.1007/s40195-022-01480-w
Previous Articles Next Articles
Chang-Jian Yan1,7(), Bo Guan2, Yun-Chang Xin2,3(
), Ling-Yu Zhao4, Guang-Jie Huang2, Rui Hong2(
), Xiao-Bo Chen5, Paul K. Chu6
Received:
2022-07-20
Revised:
2022-08-31
Accepted:
2022-09-12
Online:
2023-03-10
Published:
2022-11-10
Contact:
Rui Hong,hongrui@cqu.edu.cn;Yun-Chang Xin,ycxin@cqu.edu.cn;Chang-Jian Yan,cjyan@icost.ac.cn
Chang-Jian Yan, Bo Guan, Yun-Chang Xin, Ling-Yu Zhao, Guang-Jie Huang, Rui Hong, Xiao-Bo Chen, Paul K. Chu. Mechanical and Corrosion Behavior of a Biomedical Mg-6Zn-0.5Zr Alloy Containing a Large Number of Twins[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 439-455.
Add to citation manager EndNote|Ris|BibTeX
Fig. 5 a Inverse pole figure map, b boundary misorientation map, c (0002) pole figure of a selected grain in the PDA sample; d schematic diagram of the {10$\overline{1}$2}–{10$\overline{1}$2} secondary twin
Fig. 6 STEM images showing the distribution and morphology of the precipitates: a STA sample, b PDA sample; c high-magnification view of the selected region denoted by the orange rectangles in b; d indexing of the selected-area diffraction pattern of the deformation twin in c
Yield strength (MPa) | Ultimate strength (MPa) | Elongation (%) | CYS/TYS or TYS/CYS | ||
---|---|---|---|---|---|
ND direction | STA sample-T STA sample-C | 114 | 363 | 25.9 | 0.81 |
141 | 303 | 13.6 | |||
PDA sample-T PDA sample-C | 150 | 362 | 27.7 | 0.99 | |
149 | 323 | 15.1 | |||
RD direction | STA sample-T STA sample-C | 206 | 339 | 22.2 | 0.62 |
127 | 352 | 12.6 | |||
PDA sample-T PDA sample-C | 183 | 353 | 23.0 | 0.98 | |
179 | 383 | 13.7 | |||
TD direction | STA sample-T STA sample-C | 143 | 340 | 26.8 | 0.83 |
119 | 324 | 15.1 | |||
PDA sample-T PDA sample-C | 162 | 364 | 32.9 | 0.99 | |
164 | 345 | 16.8 |
Table 1 Mechanical properties of the STA samples and PDA samples (CYS and TYS are the compression yield strength and tension yield strength, respectively)
Yield strength (MPa) | Ultimate strength (MPa) | Elongation (%) | CYS/TYS or TYS/CYS | ||
---|---|---|---|---|---|
ND direction | STA sample-T STA sample-C | 114 | 363 | 25.9 | 0.81 |
141 | 303 | 13.6 | |||
PDA sample-T PDA sample-C | 150 | 362 | 27.7 | 0.99 | |
149 | 323 | 15.1 | |||
RD direction | STA sample-T STA sample-C | 206 | 339 | 22.2 | 0.62 |
127 | 352 | 12.6 | |||
PDA sample-T PDA sample-C | 183 | 353 | 23.0 | 0.98 | |
179 | 383 | 13.7 | |||
TD direction | STA sample-T STA sample-C | 143 | 340 | 26.8 | 0.83 |
119 | 324 | 15.1 | |||
PDA sample-T PDA sample-C | 162 | 364 | 32.9 | 0.99 | |
164 | 345 | 16.8 |
Fig. 9 SEM micrographs of the plane RD-TD of the STA samples after immersion in Hank’s solution for: a, d, e 6 h, b, f 24 h, c, g 72 h; PDA sample for h, k, l 6 h, i, m 24 h, j, n 72 h. d, e are the high-magnification views of the selected regions shown by the red rectangle and yellow rectangle in a, k, l are the high-magnification images of the selected regions denoted by the red rectangle and yellow rectangle in h
Fig.10 SEM micrographs of the plane ND-TD of the STA samples after immersion in Hank’s solution for: a, d, e 6 h, b and f 24 h, and c and g 72 h; PDA samples for h, k and l 6 h, i, m 24 h, j and n 72 h. d, e are the high-magnification images of the selected regions shown by the red rectangle and yellow rectangle in a, k and l are the high-magnification views of the selected regions denoted by the red rectangle and yellow rectangle in h
Fig. 11 SEM micrographs of the plane ND-RD of the STA samples after exposure to Hank’s solution for: a, d, e 6 h, b, f 24 h, c, g 72 h; PDA samples for h, k, l 6 h, i, m 24 h, j, n 72 h. d, e are the high-magnification images of the selected regions shown by the red rectangle and yellow rectangle in a, k, l are the high-magnification views of the selected regions denoted by the red rectangle and yellow rectangle in h
Ecorr (V vs. SCE) | icorr (μA cm-2) | |
---|---|---|
STA plane RD-TD | −1.605 | 26.75 |
STA plane ND-TD | −1.568 | 18.84 |
STA plane ND-RD | −1.583 | 19.27 |
PDA plane RD-TD | −1.594 | 21.46 |
PDA plane ND-TD | −1.591 | 20.53 |
PDA plane ND-RD | −1.597 | 18.08 |
Table 2 Ecorr and icorr derived from the potentiodynamic polarization curves
Ecorr (V vs. SCE) | icorr (μA cm-2) | |
---|---|---|
STA plane RD-TD | −1.605 | 26.75 |
STA plane ND-TD | −1.568 | 18.84 |
STA plane ND-RD | −1.583 | 19.27 |
PDA plane RD-TD | −1.594 | 21.46 |
PDA plane ND-TD | −1.591 | 20.53 |
PDA plane ND-RD | −1.597 | 18.08 |
Sample | Rs (Ω cm2) | Ydl (μΩ−1 cm−2 s-n) | ndl | Rt (Ω cm2) | Yf (μΩ−1 cm−2 s-n) | nf | Rf (Ω cm2) |
---|---|---|---|---|---|---|---|
STA plane RD-TD | 54.15 | 16.86 | 0.9292 | 574.8 | 3423 | 0.6748 | 316.6 |
STA plane ND-TD | 66.42 | 11.34 | 0.9344 | 1206 | 1742 | 0.6661 | 561 |
STA plane ND-RD | 58.88 | 11.82 | 0.9235 | 1241 | 1668 | 0.7417 | 553.6 |
PDA plane RD-TD | 52.78 | 16.49 | 0.9279 | 652.5 | 2673 | 0.6696 | 372.2 |
PDA plane ND-TD | 54.85 | 14.16 | 0.9292 | 916.2 | 2091 | 0.7298 | 499 |
PDA plane ND-RD | 57.44 | 13.7 | 0.9203 | 994.1 | 1817 | 0.7212 | 492.2 |
Table 3 Fitted EIS results using EC in Fig. 15a for the STA and PDA samples after immersion for 5 min
Sample | Rs (Ω cm2) | Ydl (μΩ−1 cm−2 s-n) | ndl | Rt (Ω cm2) | Yf (μΩ−1 cm−2 s-n) | nf | Rf (Ω cm2) |
---|---|---|---|---|---|---|---|
STA plane RD-TD | 54.15 | 16.86 | 0.9292 | 574.8 | 3423 | 0.6748 | 316.6 |
STA plane ND-TD | 66.42 | 11.34 | 0.9344 | 1206 | 1742 | 0.6661 | 561 |
STA plane ND-RD | 58.88 | 11.82 | 0.9235 | 1241 | 1668 | 0.7417 | 553.6 |
PDA plane RD-TD | 52.78 | 16.49 | 0.9279 | 652.5 | 2673 | 0.6696 | 372.2 |
PDA plane ND-TD | 54.85 | 14.16 | 0.9292 | 916.2 | 2091 | 0.7298 | 499 |
PDA plane ND-RD | 57.44 | 13.7 | 0.9203 | 994.1 | 1817 | 0.7212 | 492.2 |
Sample | Rs (Ω cm2) | Ydl (μΩ−1 cm−2 s-n) | ndl | Rt (Ω cm2) | L (H cm−2) | RL (Ω cm2) |
---|---|---|---|---|---|---|
STA plane RD-TD | 76.14 | 127.3 | 0.8165 | 698.2 | 5991 | 1317 |
STA plane ND-TD | 77.74 | 125.8 | 0.8633 | 812.6 | 6811 | 809.7 |
STA plane ND-RD | 66.19 | 133.3 | 0.8398 | 805.8 | 8584 | 1245 |
PDA plane RD-TD | 67.33 | 116.6 | 0.8496 | 719 | 6505 | 1104 |
PDA plane ND-TD | 68.54 | 154.8 | 0.7859 | 898 | 12,220 | 2010 |
PDA plane ND-RD | 66.04 | 137 | 0.8368 | 856.6 | 8264 | 1240 |
Table 4 Fitted EIS results using EC in Fig. 15b for the STA and PDA samples after immersion for 24 h
Sample | Rs (Ω cm2) | Ydl (μΩ−1 cm−2 s-n) | ndl | Rt (Ω cm2) | L (H cm−2) | RL (Ω cm2) |
---|---|---|---|---|---|---|
STA plane RD-TD | 76.14 | 127.3 | 0.8165 | 698.2 | 5991 | 1317 |
STA plane ND-TD | 77.74 | 125.8 | 0.8633 | 812.6 | 6811 | 809.7 |
STA plane ND-RD | 66.19 | 133.3 | 0.8398 | 805.8 | 8584 | 1245 |
PDA plane RD-TD | 67.33 | 116.6 | 0.8496 | 719 | 6505 | 1104 |
PDA plane ND-TD | 68.54 | 154.8 | 0.7859 | 898 | 12,220 | 2010 |
PDA plane ND-RD | 66.04 | 137 | 0.8368 | 856.6 | 8264 | 1240 |
Sample | Rs (Ω cm2) | Ydl (μΩ−1 cm−2 s-n) | ndl | Rt (Ω cm2) | L (H cm−2) | RL (Ω cm2) |
---|---|---|---|---|---|---|
STA plane RD-TD | 94.2 | 143.8 | 0.6636 | 944.3 | 5816 | 1691 |
STA plane ND-TD | 82.62 | 108.8 | 0.7698 | 1423 | 8255 | 1572 |
STA plane ND-RD | 83.71 | 124.9 | 0.702 | 1397 | 7661 | 2236 |
PDA plane RD-TD | 81.4 | 102.4 | 0.724 | 1017 | 8425 | 1515 |
PDA plane ND-TD | 70.4 | 117.1 | 0.7808 | 1149 | 9071 | 1265 |
PDA plane ND-RD | 70.1 | 132.7 | 0.7402 | 1043 | 8800 | 1500 |
Table 5 Fitted EIS results using EC in Fig. 15b for the STA and PDA samples after immersion for 72 h
Sample | Rs (Ω cm2) | Ydl (μΩ−1 cm−2 s-n) | ndl | Rt (Ω cm2) | L (H cm−2) | RL (Ω cm2) |
---|---|---|---|---|---|---|
STA plane RD-TD | 94.2 | 143.8 | 0.6636 | 944.3 | 5816 | 1691 |
STA plane ND-TD | 82.62 | 108.8 | 0.7698 | 1423 | 8255 | 1572 |
STA plane ND-RD | 83.71 | 124.9 | 0.702 | 1397 | 7661 | 2236 |
PDA plane RD-TD | 81.4 | 102.4 | 0.724 | 1017 | 8425 | 1515 |
PDA plane ND-TD | 70.4 | 117.1 | 0.7808 | 1149 | 9071 | 1265 |
PDA plane ND-RD | 70.1 | 132.7 | 0.7402 | 1043 | 8800 | 1500 |
Type of twin | Deformation mode | |
---|---|---|
Compression // ND | Primary twin 1 | Detwinning |
Primary twin 2 | Detwinning | |
Secondary twin | Tertiary twinning | |
Tension // ND | Primary twin 1 | {10\(\overline{1}\)2} twin growth |
Primary twin 2 | {10\(\overline{1}\)2} twin growth | |
Secondary twin | Prismatic slip | |
Compression // RD | Primary twin 1 | {10\(\overline{1}\)2} twin growth |
Primary twin 2 | {10\(\overline{1}\)2}-{10\(\overline{1}\)2} secondary twinning | |
Secondary twin | Detwinning | |
Tension // RD | Primary twin 1 | Detwinning |
Primary twin 2 | Prismatic slip | |
Secondary twin | Prismatic slip | |
Compression // TD | Primary twin 1 | {10\(\overline{1}\)2}-{10\(\overline{1}\)2} secondary twinning |
Primary twin 2 | {10\(\overline{1}\)2} twin growth | |
Secondary twin | {10\(\overline{1}\)2}-{10\(\overline{1}\)2} twin growth | |
Tension // TD | Primary twin 1 | Prismatic slip |
Primary twin 2 | Detwinning | |
Secondary twin | Detwinning |
Table 6 Deformation modes of different types of twins under compression or tension along the ND, RD, and TD
Type of twin | Deformation mode | |
---|---|---|
Compression // ND | Primary twin 1 | Detwinning |
Primary twin 2 | Detwinning | |
Secondary twin | Tertiary twinning | |
Tension // ND | Primary twin 1 | {10\(\overline{1}\)2} twin growth |
Primary twin 2 | {10\(\overline{1}\)2} twin growth | |
Secondary twin | Prismatic slip | |
Compression // RD | Primary twin 1 | {10\(\overline{1}\)2} twin growth |
Primary twin 2 | {10\(\overline{1}\)2}-{10\(\overline{1}\)2} secondary twinning | |
Secondary twin | Detwinning | |
Tension // RD | Primary twin 1 | Detwinning |
Primary twin 2 | Prismatic slip | |
Secondary twin | Prismatic slip | |
Compression // TD | Primary twin 1 | {10\(\overline{1}\)2}-{10\(\overline{1}\)2} secondary twinning |
Primary twin 2 | {10\(\overline{1}\)2} twin growth | |
Secondary twin | {10\(\overline{1}\)2}-{10\(\overline{1}\)2} twin growth | |
Tension // TD | Primary twin 1 | Prismatic slip |
Primary twin 2 | Detwinning | |
Secondary twin | Detwinning |
Fig. 16 Microstructure and crystallographic orientation evolution a before and b after 3% compression along the RD of the PDA samples, c, d crystallographic orientations of the selected grains in a, b
Fig. 17 Microstructure and crystallographic orientation evolution a before and b after 3% compression along the ND of the PDA samples, c, d crystallographic orientations of the selected grains in a, b
[1] | J.X. Chen, X.Y. Zhu, L.L. Tan, K. Yang, X.P. Su, Acta Metall. Sin. -Engl. Lett. 34, 205 (2020) |
[2] | P. Trumbo, S. Schlicker, A.A. Yates, M. Poos, J. Am. Diet. Assoc. 102, 1621 (2002) |
[3] | L. Zhang, Y. Zhang, J. Zhang, R. Zhao, J. Zhang, C. Xu, Acta Metall. Sin. -Engl. Lett. 33, 500 (2020) |
[4] | Y. Shao, R.C. Zeng, S.Q. Li, L.Y. Cui, Y.H. Zou, S.K. Guan, Y.F. Zheng, Acta Metall. Sin. -Engl. Lett. 33, 615 (2020) |
[5] | F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials 27, 1013 (2006) |
[6] | H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, M. Shakibaei, J. Biomed. Mater. Res. Part A 62, 175 (2002) |
[7] | G. Song, A. Atrens, D.S. John, X. Wu, J. Nairn, Corros. Sci. 39, 1981 (1997) |
[8] | Y.F. Zheng, X.N. Gu, F. Witte, Mater. Sci. Eng. R 77, 1 (2014) |
[9] | F. Witte, Acta Biomater. 23(Suppl), 28 (2015) |
[10] | J.W. Choi, Y.M. Kong, H.E. Kim, I.S. Lee, J. Am. Ceram. Soc. 81, 1742 (1998) |
[11] | M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006) |
[12] | A. Purnama, H. Hermawan, J. Couet, D. Mantovani, Acta Biomater. 6, 1800 (2010) |
[13] | J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim, K. Yang, J. Mech. Behav. Biomed. Mater. 87, 68 (2018) |
[14] | F. Fereshteh-Saniee, N. Fakhar, F. Karami, R. Mahmudi, Mater. Sci. Eng. A 673, 450 (2016) |
[15] | Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials 29, 1329 (2008) |
[16] | S.E. Harandi, M. Hasbullah Idris, H. Jafari, Mater. Des. 32, 2596 (2011) |
[17] | C. Yan, Y. Xin, C. Wang, H. Liu, Q. Liu, J. Mater. Sci. Technol. 52, 89 (2020) |
[18] | E.A. Lukyanova, N.S. Martynenko, I. Shakhova, A.N. Belyakov, L.L. Rokhlin, S.V. Dobatkin, Y.Z. Estrin, Mater. Lett. 170, 5 (2016) |
[19] | Y. Tian, H. Huang, G. Yuan, W. Ding, J. Alloys Compd. 626, 42 (2015) |
[20] | A. Singh, H. Somekawa, T. Mukai, Scr. Mater. 56, 935 (2007) |
[21] | P. Zhang, Y. Xin, L. Zhang, S. Pan, Q. Liu, J. Mater. Sci. Technol. 41, 98 (2019) |
[22] | Y. Chino, K. Kimura, M. Hakamada, M. Mabuchi, Mater. Sci. Eng. A 485, 311 (2008) |
[23] | C. Yan, Y. Xin, X.B. Chen, D. Xu, P.K. Chu, C. Liu, B. Guan, X. Huang, Q. Liu, Nat. Commun. 12, 4616 (2021) |
[24] | N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie, M.R. Barnett, Acta Mater. 60, 218 (2012) |
[25] | Y. Xin, X. Zhou, Q. Liu, Mater. Sci. Eng. A 567, 9 (2013) |
[26] | B. Guan, Y. Xin, X. Huang, P. Wu, Q. Liu, Acta Mater. 173, 142 (2019) |
[27] | H.H. Yu, C.Z. Li, Y.C. Xin, A. Chapuis, X.X. Huang, Q. Liu, Acta Mater. 128, 313 (2017) |
[28] | J. Wang, X. Li, P. Jin, S. Li, G. Ma, L. Zhao, Mater. Res. Express. 5, 116518 (2018) |
[29] | A.E. Davis, J.D. Robson, M. Turski, Acta Mater. 158, 1 (2018) |
[30] | D.L. Yin, J.T. Wang, J.Q. Liu, X. Zhao, J. Alloys Compd. 478, 789 (2009) |
[31] | G.L. Song, R. Mishra, Z. Xu, Electrochem. Commun. 12, 1009 (2010) |
[32] | Q. Jiang, X. Ma, K. Zhang, Y. Li, X. Li, Y. Li, M. Ma, B. Hou, J. Magnes. Alloy. 3, 309 (2015) |
[33] | Q.H. Zang, H.M. Chen, J. Zhang, J.H. Cho, Y.X. Jin, Y.K. Shi, Mater. Res. Innov. 19, 102 (2015) |
[34] | Y. Song, E.H. Han, D. Shan, C.D. Yim, B.S. You, Corros. Sci. 65, 322 (2012) |
[35] | X. Lin, L. Tan, Q. Wang, G. Zhang, B. Zhang, K. Yang, Mater. Sci. Eng. C Mater. Biol. Appl. 33, 3881 (2013) |
[36] | Z.R. Qi, Q. Zhang, L.L. Tan, X. Lin, Y. Yin, X.L. Wang, K. Yang, Y. Wang, J. Biomed. Mater. Res. A 102, 1255 (2014) |
[37] | S. Zhang, Y. Bi, J. Li, Z. Wang, J. Yan, J. Song, H. Sheng, H. Guo, Y. Li, Bioact. Mater. 2, 53 (2017) |
[38] | D. Orlov, G. Raab, T.T. Lamark, M. Popov, Y. Estrin, Acta Mater. 59, 375 (2011) |
[39] | M. Pérez-Prado, O.A. Ruano, Scr. Mater. 46, 149 (2002) |
[40] | H. Chen, T. Liu, Y. Zhang, B. Song, D. Hou, F. Pan, Mater. Sci. Eng. A 652, 167 (2016) |
[41] | X. Gao, J.F. Nie, Scr. Mater. 56, 645 (2007) |
[42] | Y. Xin, K. Huo, T. Hu, G. Tang, P.K. Chu, J. Mater. Res.24, 2711 (2011) |
[43] | Z. Cui, F. Ge, Y. Lin, L. Wang, L. Lei, H. Tian, M. Yu, X. Wang, Electrochim. Acta 278, 421 (2018) |
[44] | Y. Zhang, C. Yan, F. Wang, W. Li, Corros. Sci. 47, 2816 (2005) |
[45] | J. Li, B. Zhang, Q. Wei, N. Wang, B. Hou, Electrochim. Acta 238, 156 (2017) |
[46] | G. Baril, N. Pébère, Corros. Sci. 43, 471 (2001) |
[47] | T. Zhang, G. Meng, Y. Shao, Z. Cui, F. Wang, Corros. Sci. 53, 2934 (2011) |
[48] | J. Chen, J. Wang, E. Han, J. Dong, W. Ke, Electrochim. Acta 52, 3299 (2007) |
[49] | C.N. Cao, J.Q. Zhang, An introduction to electrochemical impedance spectroscopy (Science Press, Beijing, 2002), pp.2l-24 |
[50] | Y. Xin, T. Hu, P.K. Chu, Corros. Sci. 53, 1522 (2011) |
[51] | Y. Song, D. Shan, R. Chen, E.H. Han, Corros. Sci. 51, 1087 (2009) |
[52] | S. Agnew, D. Brown, C. Tome, Acta Mater. 54, 4841 (2006) |
[53] | J. Koike, R. Ohyama, Acta Mater. 53, 1963 (2005) |
[54] | L. Wang, Z. Huang, H. Wang, A. Maldar, S. Yi, J.S. Park, P. Kenesei, E. Lilleodden, X. Zeng, Acta Mater. 155, 138 (2018) |
[55] | H. Yu, Y. Xin, M. Wang, Q. Liu, J. Mater. Sci. Technol. 34, 248 (2018) |
[56] | X. Lou, M. Li, R. Boger, S. Agnew, R. Wagoner, Int. J. Plast. 23, 44 (2007) |
[57] | L. Wu, S.R. Agnew, D.W. Brown, G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, P.K. Liaw, Acta Mater. 56, 3699 (2008) |
[58] | H.H. Yu, Y.C. Xin, A. Chapuis, X.X. Huang, R.L. Xin, Q. Liu, Sci. Rep. 6, 29283 (2016) |
[59] | Y. Xin, M. Wang, Z. Zeng, M. Nie, Q. Liu, Scr. Mater. 66, 25 (2012) |
[60] | B. Song, R. Xin, N. Guo, J. Xu, L. Sun, Q. Liu, Mater. Sci. Eng. A 639, 724 (2015) |
[61] | G.L. Song, JOM 64, 671 (2012) |
[62] | B.J. Wang, D.K. Xu, J.H. Dong, W. Ke, Scr. Mater. 88, 5 (2014) |
[63] | K. Hagihara, M. Okubo, M. Yamasaki, T. Nakano, Corros. Sci. 109, 68 (2016) |
[64] | H. Jia, X. Feng, Y. Yang, J. Mater. Sci. Technol. 34, 1229 (2018) |
[65] | C. op't Hoog, N. Birbilis, Y. Estrin, Adv. Eng. Mater. 10, 579 (2008) |
[66] | D. Ahmadkhaniha, M. Fedel, M. Heydarzadeh Sohi, F. Deflorian, Surf. Eng. Appl. Electrochem. 53, 439 (2017) |
[67] | H.S. Kim, G.H. Kim, H. Kim, W.J. Kim, Corros. Sci. 74, 139 (2013) |
[68] | N.N. Aung, W. Zhou, Corros. Sci. 52, 589 (2010) |
[69] | G. Zou, Q. Peng, Y. Wang, B. Liu, J. Alloys Compd. 618, 44 (2015) |
[70] | B.J. Wang, D.K. Xu, Y.C. Xin, L.Y. Sheng, E.H. Han, Sci. Rep. 7, 16014 (2017) |
[71] | X. Li, J.H. Jiang, Y.H. Zhao, A.B. Ma, D.J. Wen, Y.T. Zhu, Trans. Nonferrous Met. Soc. China 25, 3909 (2015) |
[1] | Weiwei Chang, Yangyang Li, Huaibei Zheng, Hongchang Qian, Dawei Guo, Shuyuan Zhang, Yuntian Lou, Chi Tat Kwok, Lap Mou Tam, Dawei Zhang. Microbiologically Influenced Corrosion Behavior of Fe40(CoCrMnNi)60 and Fe60(CoCrMnNi)40 Medium Entropy Alloys in the Presence of Pseudomonas Aeruginosa [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 379-390. |
[2] | Weiying Huang, Jianhua Chen, Zhen Jiang, Xi Xiong, Wei Qiu, Jian Chen, Xianwei Ren, Liwei Lu. Influence of Ca Content on Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 426-438. |
[3] | Zhu Wang, Guo-Hui Zhang, Yong Yao, Xue-Hua Fan, Jie Jin, Lei Zhang, Yan-Xia Du. Corrosion Behaviour of a Non-equiatomic CoCrFeNiMo High-Entropy Alloy in H2S-Containing and H2S-Free Environments [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 366-378. |
[4] | Guoqiang Xi, Xuhan Zhao, Yanlong Ma, Yu Mou, Ju Xiong, Kai Ma, Jingfeng Wang. Comparative Study on Corrosion Behavior and Mechanism of As-Cast Mg-Zn-Y and Mg-Zn-Gd Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 310-322. |
[5] | Wenhui Yao, Yonghua Chen, Yanning Chen, Liang Wu, Bin Jiang, Fusheng Pan. Development of Slippery Liquid-Infused Porous Surface on AZ31 Mg Alloys for Corrosion Protection [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 229-236. |
[6] | H. Zhang, H. L. Hao, G. Y. Fu, B. S. Liu, R. G. Li, R. Z. Wu, H. C. Pan. Microstructure and Mechanical Property of Hot-Rolled Mg-2Ag Alloy Prepared with Multi-pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 335-342. |
[7] | Xihai Li, Hong Yan, Rongshi Chen. Tailoring the Texture and Mechanical Anisotropy of Multi-cross Rolled Mg-Zn-Gd Alloy by Annealing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 251-265. |
[8] | Tianjiao Li, Jiang Zheng, Lihong Xia, Haoge Shou, Yongfa Zhang, Rong Shi, Liuyong He, Wenkai Li. Tailoring Texture to Highly Strengthen AZ31 Alloy Plate in the Thickness Direction via Pre-tension and Rolling-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 266-280. |
[9] | Yu-Jin Nie, Jian-Wei Dai, Xiao-Bo Zhang. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg-Nd-Zn-Zr Alloy for Orthopedic Application [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 295-309. |
[10] | Zhen Jiang, Dongfeng Shi, Jin Zhang, Tianming Li, Liwei Lu. Effect of Zn and Y Additions on Grain Boundary Movement of Mg Binary Alloys During Static Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 179-191. |
[11] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[12] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[13] | Zuohua Wang, Haidong Sun, Peng Wang, Ning Liu, Pinwen Zhu, Dongli Yu, Hongwang Zhang. {112} 〈111〉 Twins or Twinned Variants Induced by Martensitic Transformation? [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 133-140. |
[14] | Hao-Jie Yan, Jun-Jie Xia, Lian-Kui Wu, Fa-He Cao. Hot Corrosion Behavior of Ti45Al8.5Nb Alloy: Effect of Anodization and Pre-oxidation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1531-1546. |
[15] | Xiu-Rong Zhu, Jun Wang, Wei-Ning Shi, Xue-Bing Liu, Xin-Fang Zhang, Hai-Fei Zhou. Manipulating Precipitation Through Thermomechanical Treatment to Control Corrosion Behavior of an Al-Cu-Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1547-1558. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||