Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (3): 425-438.DOI: 10.1007/s40195-021-01318-x
Previous Articles Next Articles
Yujian Wang1, Shuo Chu1, Zhijun Wang1(), Junjie Li1(
), Jincheng Wang1
Received:
2021-06-21
Revised:
2021-07-17
Accepted:
2021-08-05
Online:
2021-09-27
Published:
2021-09-27
Contact:
Zhijun Wang,Junjie Li
About author:
Junjie Li, lijunjie@nwpu.edu.cnYujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438.
Add to citation manager EndNote|Ris|BibTeX
Grid size dx (μm) | 0.02 |
---|---|
Time step dt (s) | 1.491 × 10-9 |
Initial composition of Al c01 (at.%) | 0.10198 |
Initial composition of V c02 (at.%) | 0.036 |
Interface width (μm) 2λ | 0.1 |
Interface energyσSL (J/m2) | 0.5 |
Anisotropy strength γ4 | 0.02 |
Liquid diffusion coefficient of Al ${D}_{\mathrm{Al}}^{\mathrm{L}}$ (m2/s) [ | 1.24 × 10-8 |
Liquid diffusion coefficient of V ${D}_{\mathrm{V}}^{\mathrm{L}}$ (m2/s) [ | 1.24 × 10-8 |
Phase-field mobility for solid-liquid interface MSL (m3/J/s) | 6.6 × 10-7 |
Phase-field mobility for solid-solid interface MSS (m3/J/s) | 6.6 × 10-8 |
Table 1 Simulation parameters used in the multiphase-field model
Grid size dx (μm) | 0.02 |
---|---|
Time step dt (s) | 1.491 × 10-9 |
Initial composition of Al c01 (at.%) | 0.10198 |
Initial composition of V c02 (at.%) | 0.036 |
Interface width (μm) 2λ | 0.1 |
Interface energyσSL (J/m2) | 0.5 |
Anisotropy strength γ4 | 0.02 |
Liquid diffusion coefficient of Al ${D}_{\mathrm{Al}}^{\mathrm{L}}$ (m2/s) [ | 1.24 × 10-8 |
Liquid diffusion coefficient of V ${D}_{\mathrm{V}}^{\mathrm{L}}$ (m2/s) [ | 1.24 × 10-8 |
Phase-field mobility for solid-liquid interface MSL (m3/J/s) | 6.6 × 10-7 |
Phase-field mobility for solid-solid interface MSS (m3/J/s) | 6.6 × 10-8 |
Fig. 2 a Two-dimensional cross-section of thermal field in the molten pool; b thermal characteristics of the black line in a at different time in the molten pool with the process parameters of P = 360 W; v = 0.5 m/s
Process parameters | Thermal gradient ($\mathrm{K}/\mu m)$ | Cooling rate ($\mathrm{K}/\mu s$) |
---|---|---|
P = 120 W; v = 0.5 m/s | 1.07 | 0.10 |
P = 120 W; v = 0.25 m/s | 0.59 | 0.05 |
P = 360 W; v = 0.5 m/s | 0.85 | 0.14 |
Table 2 Thermal characteristics of molten pool with different process parameters
Process parameters | Thermal gradient ($\mathrm{K}/\mu m)$ | Cooling rate ($\mathrm{K}/\mu s$) |
---|---|---|
P = 120 W; v = 0.5 m/s | 1.07 | 0.10 |
P = 120 W; v = 0.25 m/s | 0.59 | 0.05 |
P = 360 W; v = 0.5 m/s | 0.85 | 0.14 |
Fig. 4 Simulated steady-state columnar $\beta$ grains under different thermal conditions. The simulated results with dash line box corresponding to the process parameters listed in Table 2
Fig. 7 Effect of thermal gradient on the solute distribution of a Al, b V in the intercellular regions while keeping a constant cooling rate of 0.05 K/μs
Fig. 8 Effect of cooling rate on the solute distribution of a Al, b V in the intercellular regions while keeping a constant thermal gradient of 0.85 K/μm
${\text{Velocity}}\,{ }\left( {{\mu m}/{\text{s}}} \right)$ | $c_{{{\text{L}},{\text{tip}}}}^{{{\text{Al}}}}$ | $c_{{{\text{S}},{\text{tip}}}}^{{{\text{Al}}}}$ | $k_{{{\text{Al}}}}$ | $c_{{{\text{L}},{\text{tip}}}}^{{\text{V}}}$ | $c_{{{\text{S}},{\text{tip}}}}^{{\text{V}}}$ | $k_{{\text{V}}}$ |
---|---|---|---|---|---|---|
46,729 | 0.1034 | 0.1013 | 0.9796 | 0.0464 | 0.0313 | 0.6741 |
58,823 | 0.1034 | 0.1014 | 0.9806 | 0.0460 | 0.0320 | 0.6942 |
84,746 | 0.1033 | 0.1014 | 0.9816 | 0.0457 | 0.0321 | 0.7019 |
93,458 | 0.1033 | 0.1015 | 0.9825 | 0.0454 | 0.0328 | 0.7234 |
117,647 | 0.1032 | 0.1015 | 0.9835 | 0.0450 | 0.0328 | 0.7294 |
130,841 | 0.1031 | 0.1015 | 0.9844 | 0.0438 | 0.0331 | 0.7555 |
164,705 | 0.1030 | 0.1016 | 0.9864 | 0.0435 | 0.0334 | 0.7680 |
169,491 | 0.1030 | 0.1016 | 0.9864 | 0.0433 | 0.0335 | 0.7729 |
237,288 | 0.1029 | 0.1017 | 0.9883 | 0.0416 | 0.0341 | 0.8193 |
Table 3 Changes of tip concentration under different growth velocities. The bold contents from top to bottom correspond to the following process parameters: P = 120 W, v = 0.25 m/s; P = 120 W, v = 0.5 m/s; P = 360 W, v = 0.5 m/s
${\text{Velocity}}\,{ }\left( {{\mu m}/{\text{s}}} \right)$ | $c_{{{\text{L}},{\text{tip}}}}^{{{\text{Al}}}}$ | $c_{{{\text{S}},{\text{tip}}}}^{{{\text{Al}}}}$ | $k_{{{\text{Al}}}}$ | $c_{{{\text{L}},{\text{tip}}}}^{{\text{V}}}$ | $c_{{{\text{S}},{\text{tip}}}}^{{\text{V}}}$ | $k_{{\text{V}}}$ |
---|---|---|---|---|---|---|
46,729 | 0.1034 | 0.1013 | 0.9796 | 0.0464 | 0.0313 | 0.6741 |
58,823 | 0.1034 | 0.1014 | 0.9806 | 0.0460 | 0.0320 | 0.6942 |
84,746 | 0.1033 | 0.1014 | 0.9816 | 0.0457 | 0.0321 | 0.7019 |
93,458 | 0.1033 | 0.1015 | 0.9825 | 0.0454 | 0.0328 | 0.7234 |
117,647 | 0.1032 | 0.1015 | 0.9835 | 0.0450 | 0.0328 | 0.7294 |
130,841 | 0.1031 | 0.1015 | 0.9844 | 0.0438 | 0.0331 | 0.7555 |
164,705 | 0.1030 | 0.1016 | 0.9864 | 0.0435 | 0.0334 | 0.7680 |
169,491 | 0.1030 | 0.1016 | 0.9864 | 0.0433 | 0.0335 | 0.7729 |
237,288 | 0.1029 | 0.1017 | 0.9883 | 0.0416 | 0.0341 | 0.8193 |
[1] |
C. Körner, Int. Mater. Rev. 61, 361 (2016)
DOI URL |
[2] | W.E. Frazier, J. Mater. Eng, Perform. 23, 1917 (2014) |
[3] | S. Liu, Y.C. Shin, Mater. Des. 164, 107552(2019) |
[4] |
B. Wysocki, P. Maj, R. Sitek, J. Buhagiar, K.J. Kurzydłowski, W. Święszkowski, Appl. Sci. 7, 657 (2017)
DOI URL |
[5] |
Y.L. Hao, S.J. Li, R. Yang, Rare Met. 35, 661 (2016)
DOI URL |
[6] | X.P. Tan, S. Chandra, Y. Kok, S.B. Tor, G. Seet, N.H. Loh, E. Liu, Materialia 7, 100365 (2019) |
[7] | X. Gong, K. Chou, JOM 67, 1176 (2015) |
[8] | S. Sahoo, K. Chou, Addit. Manuf. 9, 14 (2016) |
[9] |
V. Fallah, M. Amoorezaei, N. Provatas, S.F. Corbin, A. Khajepour, Acta Mater. 60, 1633 (2012)
DOI URL |
[10] | Y. Wang, J. Shi, Y. Liu, J. Cryst. Growth 521, 15 (2019) |
[11] | X. Ao, H. Xia, J. Liu, Q. He, Mater. Des. 185, 108230(2020) |
[12] |
J. Kundin, L. Mushongera, H. Emmerich, Acta Mater. 95, 343 (2015)
DOI URL |
[13] | S. Chu, C. Guo, T. Zhang, Y. Wang, J. Li, Z. Wang, J. Wang, Y. Qian, H. Zhao, Eur. Phys. J. E 43, 35 (2020) |
[14] | D. Liu, Y. Wang, Addit. Manuf. 25, 551 (2019) |
[15] | S. Liu, Y.C. Shin, Comput. Mater. Sci. 183, 109889(2020) |
[16] | Y. Wang, J. Li, H. Yang, J. Ma, D. Cui, Y. Gao, Z. Wang, J. Wang, Comput. Mater. Sci. 191, 110353(2021) |
[17] |
T. Pinomaa, N. Provatas, Acta Mater. 168, 167 (2019)
DOI |
[18] |
T. Pinomaa, M. Lindroos, M. Walbrühl, N. Provatas, A. Laukkanen, Acta Mater. 184, 1 (2020)
DOI URL |
[19] | S. Kavousi, M. Asle Zaeem, Acta Mater. 205, 116562(2021) |
[20] |
T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, Y. Idell, M.E. Williams, A.J. Allen, J.E. Guyer, L.E. Levine, Acta Mater. 139, 244 (2017)
DOI URL |
[21] | V.B. Rajkumar, Y. Du, Y. Zeng, S. Tang, Calphad 68, 101691 (2020) |
[22] | C. Yang, Q. Xu, B. Liu, J. Cryst. Growth 490, 25 (2018) |
[23] |
C. Yang, Q. Xu, X. Su, B. Liu, Acta Mater. 175, 286 (2019)
DOI URL |
[24] |
D. Qiu, R. Shi, D. Zhang, W. Lu, Y. Wang, Acta Mater. 88, 218 (2015)
DOI URL |
[25] |
D. Qiu, R. Shi, P. Zhao, D. Zhang, W. Lu, Y. Wang, Acta Mater. 112, 347 (2016)
DOI URL |
[26] |
J. Li, Z. Wang, Y. Wang, J. Wang, Acta Mater. 60, 1478 (2012)
DOI URL |
[27] | I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, Phys. D 94, 135 (1996) |
[28] | J. Eiken, B. Boettger, I. Steinbach, Phys. Rev. E 73, 066122 (2006) |
[29] | S.G. Kim, W.T. Kim, T. Suzuki, Phys. Rev. E 60, 7186 (1999) |
[30] |
S.G. Kim, Acta Mater. 55, 4391 (2007)
DOI URL |
[31] | S. Gyoon Kim, W. Tae Kim, T. Suzuki, M. Ode, J. Cryst. Growth 261, 135 (2004) |
[32] | S.L. Chen, F. Zhang, S. Daniel, F.Y. Xie, X.Y. Yan, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates, JOM 55, 48 (2003) |
[33] | W. Sun, Y. Xie, R. Yan, S. Ma, H. Dong, T. Jing, Metall. Mater. Trans. B 50, 2487 (2019) |
[34] |
W. Sun, R. Yan, Y. Zhang, H. Dong, T. Jing, Comp. Mater. Sci. 160, 149 (2019)
DOI URL |
[35] |
A. Ho, H. Zhao, J.W. Fellowes, F. Martina, A.E. Davis, P.B. Prangnell, Acta Mater. 166, 306 (2019)
DOI URL |
[36] |
M.J. Bermingham, S.D. McDonald, D.H. StJohn, M.S. Dargusch, J. Mater. Res. 24, 1529 (2009)
DOI URL |
[37] |
M.J. Bermingham, S.D. Mcdonald, M.S. Dargusch, D.H. Stjohn, J. Mater. Res. 23, 97 (2008)
DOI URL |
[38] | Y. Qian, W. Yan, F. Lin, Engineering 5, 746 (2019) |
[39] |
W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, G.J. Wagner, Acta Mater. 134, 324 (2017)
DOI URL |
[40] | M.H. Burden, J.D. Hunt, J. Cryst. Growth 22, 99 (1974) |
[41] |
W. Kurz, D.J. Fisher, Acta Mater. 29, 11 (1981)
DOI URL |
[42] |
M. Aziz, J. Appl. Phys. 53, 1158 (1982)
DOI URL |
[43] |
T. Gong, Y. Chen, S. Li, Y. Cao, D. Li, X.Q. Chen, G. Reinhart, H. Nguyen-Thi, J. Mater. Sci. Technol. 74, 155 (2021)
DOI URL |
[1] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[2] | Sheng-Ya He, Chuan-Jun Li, Tong-Jun Zhan, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. Reduction in Microsegregation in Al-Cu Alloy by Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 267-274. |
[3] | Tan He,Rui Hu,Tie-Bang Zhang,Jin-Shan Li. Effect of Nb Content on Solidification Characteristics and Microsegregation in Cast Ti-48Al-xNb Alloys [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8): 714-721. |
[4] | Rui Chen, Qing-Yan Xu, Bai-Cheng Liu. Simulation of the Dendrite Morphology and Microsegregation in Solidification of Al-Cu-Mg Aluminum Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 173-181. |
[5] | M. Manikandan, N. Arivazhagan, M. Nageswara Rao, G. Madhusudhan Reddy. Improvement of Microstructure and Mechanical Behavior of Gas Tungsten Arc Weldments of Alloy C-276 by Current Pulsing [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2): 208-215. |
[6] | Liu Shaojun, Yang Guangyu, Jie Wanqi. Microstructure, Microsegregation, and Mechanical Properties of Directional Solidified Mg-3.0Nd-1.5Gd Alloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1134-1143. |
[7] | M. S. Abdel Rahman, N. A. Abdel Raheem, M. R. El Koussy. Effect of Heat Input on the Microstructure and Properties of Dissimilar Weld Joint Between Incoloy 28 and Superaustenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(2): 259-266. |
[8] | Fenghua LI, Xiaohong YI, Jinglei ZHANG,Zhanguo FAN, Dianting GONG, Zhengping XI. Growth kinetics of titanium boride layers on the surface of Ti6Al4V [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(4): 293-300. |
[9] | J.W. Zhao, H. Ding, W.J.Zhao, F.R. Cao, H.L. Hou, Z.Q. Li. MODELING OF DYNAMIC RECRYSTALLIZATION OF Ti6Al4V ALLOY USING A CELLULAR AUTOMATON APPROACH [J]. Acta Metallurgica Sinica (English Letters), 2008, 21(4): 260-268 . |
[10] | Y.C. Miao, X.M. Zhang, G.D. Wang. SIMULATION OF THE TWIN ROLL STAINLESS STRIP CASTING PROCESS [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(3): 199-204 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||