Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (10): 1331-1345.DOI: 10.1007/s40195-020-01081-5
Previous Articles Next Articles
Wen-Ya Zhang1, Can-Ming Wang1(), Jing-Xin Ji1, Xiao-Li Feng1, Hong-Zhi Cui1(
), Qiang Song1, Chun-Zhi Zhang1
Received:
2020-01-02
Revised:
2020-02-23
Online:
2020-10-10
Published:
2020-10-20
Contact:
Can-Ming Wang,Hong-Zhi Cui
Wen-Ya Zhang, Can-Ming Wang, Jing-Xin Ji, Xiao-Li Feng, Hong-Zhi Cui, Qiang Song, Chun-Zhi Zhang. Synthetic Effect of Cr and Mo Elements on Microstructure and Properties of Laser Cladding NiCrxMoy Alloy Coatings[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1331-1345.
Add to citation manager EndNote|Ris|BibTeX
Alloy coatings | Composition (at.%) | ||
---|---|---|---|
Ni | Cr | Mo | |
NiCr | 50 | 50 | - |
NiCrMo0.1 | 47.62 | 47.62 | 4.76 |
NiCrMo0.3 | 43.48 | 43.48 | 13.04 |
NiCr1.5 | 40 | 60 | - |
NiCr1.5Mo0.1 | 38.46 | 57.69 | 3.85 |
NiCr1.5Mo0.3 | 35.71 | 53.57 | 10.71 |
Table 1 Compositions of NiCrxMoy alloy coating powders
Alloy coatings | Composition (at.%) | ||
---|---|---|---|
Ni | Cr | Mo | |
NiCr | 50 | 50 | - |
NiCrMo0.1 | 47.62 | 47.62 | 4.76 |
NiCrMo0.3 | 43.48 | 43.48 | 13.04 |
NiCr1.5 | 40 | 60 | - |
NiCr1.5Mo0.1 | 38.46 | 57.69 | 3.85 |
NiCr1.5Mo0.3 | 35.71 | 53.57 | 10.71 |
Fig. 4 SEM micrographs of the NiCrxMoy alloy coatings: a, a1 secondary electron (SE) image of the NiCr coating, b SE image of the NiCrMo0.1 coating, b1 backscattered electron (BSE) image of the NiCrMo0.1 coating at high magnification, c SE image of the NiCrMo0.3 coating, c1 BSE image of the NiCrMo0.3 coating at high magnification, d, d1 SE images of the NiCr1.5 coating, e, e1 SE images of the NiCr1.5Mo0.1 coating, f, f1, f2 SE images of the NiCr1.5Mo0.3 coating
Alloy coatings | Area | Ni | Fe | Cr | Mo |
---|---|---|---|---|---|
NiCr | DR | 38.02 | 25.31 | 36.67 | - |
NiCrMo0.1 | DR | 33.26 | 32.57 | 30.88 | 3.29 |
IDM | 31.92 | 29.94 | 33.66 | 4.48 | |
B | 23.43 | 25.81 | 41.15 | 9.61 | |
NiCrMo0.3 | DR | 27.12 | 40.83 | 24.76 | 7.29 |
IDM | 27.62 | 39.78 | 25.07 | 7.52 | |
B | 19.69 | 35.01 | 29.80 | 15.49 | |
NiCr1.5 | DR | 38.39 | 17.71 | 43.90 | - |
ID | 26.32 | 16.93 | 56.75 | - | |
NiCr1.5Mo0.1 | DR | 34.35 | 25.08 | 37.56 | 3.01 |
ID | 19.71 | 23.02 | 52.01 | 5.27 | |
NiCr1.5Mo0.3 | DR | 23.32 | 23.51 | 41.80 | 11.37 |
ID | 22.43 | 22.78 | 44.21 | 10.58 |
Table 2 Chemical composition (at.%) of different areas of the NiCrxMoy alloy coatings
Alloy coatings | Area | Ni | Fe | Cr | Mo |
---|---|---|---|---|---|
NiCr | DR | 38.02 | 25.31 | 36.67 | - |
NiCrMo0.1 | DR | 33.26 | 32.57 | 30.88 | 3.29 |
IDM | 31.92 | 29.94 | 33.66 | 4.48 | |
B | 23.43 | 25.81 | 41.15 | 9.61 | |
NiCrMo0.3 | DR | 27.12 | 40.83 | 24.76 | 7.29 |
IDM | 27.62 | 39.78 | 25.07 | 7.52 | |
B | 19.69 | 35.01 | 29.80 | 15.49 | |
NiCr1.5 | DR | 38.39 | 17.71 | 43.90 | - |
ID | 26.32 | 16.93 | 56.75 | - | |
NiCr1.5Mo0.1 | DR | 34.35 | 25.08 | 37.56 | 3.01 |
ID | 19.71 | 23.02 | 52.01 | 5.27 | |
NiCr1.5Mo0.3 | DR | 23.32 | 23.51 | 41.80 | 11.37 |
ID | 22.43 | 22.78 | 44.21 | 10.58 |
Area | Ni | Fe | Cr | Mo |
---|---|---|---|---|
A | 40.19 | 14.35 | 42.47 | 2.97 |
B | 30.81 | 14.63 | 51.91 | 2.63 |
C | 23.04 | 14.14 | 59.66 | 3.14 |
D | 20.00 | 13.16 | 61.18 | 5.64 |
E | 47.90 | 18.46 | 32.61 | 1.01 |
Table 3 Composition (at.%) in different regions marked in Fig. 6
Area | Ni | Fe | Cr | Mo |
---|---|---|---|---|
A | 40.19 | 14.35 | 42.47 | 2.97 |
B | 30.81 | 14.63 | 51.91 | 2.63 |
C | 23.04 | 14.14 | 59.66 | 3.14 |
D | 20.00 | 13.16 | 61.18 | 5.64 |
E | 47.90 | 18.46 | 32.61 | 1.01 |
Fig. 6 TEM micrographs of NiCr1.5Mo0.1 alloy coating: a, b, c bright-field (BF) images of the NiCr1.5Mo0.1coating, d HRTEM image of region C, e HRTEM image of region D, f HRTEM image of region E, g SAED-pattern of region A in a, h corresponding fast Fourier transformation patterns of region in d, i corresponding fast Fourier transformation patterns of region in e, j corresponding fast Fourier transformation patterns of region in f
Fig. 8 Potentiodynamic polarization curves of a NiCrMoy alloy coatings, b NiCr1.5Moy alloy coatings, c NiCrxMoy (x = 1, 1.5; y = 0, 0.1) alloy coatings
Alloy coatings | Ecorr (mV) | icorr (μA/cm2) | Etr (mV) | Epp (mV) | Eb (mV) | ?E |
---|---|---|---|---|---|---|
NiCr | - 180.2 | 9.91 × 10-2 | 917.5 | 339.8 | 708.7 | 368.9 |
NiCrMo0.1 | - 167.4 | 4.88 × 10-2 | 932.0 | - 53.4 | 907.8 | 961.2 |
NiCrMo0.3 | - 321.7 | 1.79 × 10-1 | 975.7 | - 184.5 | 970.9 | 1155.4 |
NiCr1.5 | - 201.1 | 2.92 × 10-2 | 847.5 | 72.7 | 847.5 | 774.8 |
NiCr1.5Mo0.1 | - 185.7 | 4.52 × 10-3 | 941.7 | 101.9 | 912.6 | 810.7 |
NiCr1.5Mo0.3 | - 415.9 | 1.71 | 1002.0 | - 241.5 | 978.2 | 1219.7 |
Table 4 Electrochemical parameters of the NiCrxMoy alloy coatings in 3.5 wt% NaCl solution
Alloy coatings | Ecorr (mV) | icorr (μA/cm2) | Etr (mV) | Epp (mV) | Eb (mV) | ?E |
---|---|---|---|---|---|---|
NiCr | - 180.2 | 9.91 × 10-2 | 917.5 | 339.8 | 708.7 | 368.9 |
NiCrMo0.1 | - 167.4 | 4.88 × 10-2 | 932.0 | - 53.4 | 907.8 | 961.2 |
NiCrMo0.3 | - 321.7 | 1.79 × 10-1 | 975.7 | - 184.5 | 970.9 | 1155.4 |
NiCr1.5 | - 201.1 | 2.92 × 10-2 | 847.5 | 72.7 | 847.5 | 774.8 |
NiCr1.5Mo0.1 | - 185.7 | 4.52 × 10-3 | 941.7 | 101.9 | 912.6 | 810.7 |
NiCr1.5Mo0.3 | - 415.9 | 1.71 | 1002.0 | - 241.5 | 978.2 | 1219.7 |
Alloy | Ecorr (mV) | icorr (μA/cm2) | Epp (mV) | References |
---|---|---|---|---|
NiCr1.5Mo0.1 | - 185.7 | 4.52 × 10-3 | 101.9 | This work |
NiCr | - 180.2 | 9.91 × 10-2 | 339.8 | This work |
Co1.5CrFeNi1.5Ti0.5 | - 443 | 5.7 × 10-1 | - 219 | [ |
Co1.5CrFeNi1.5Ti0.5Mo0.1 | - 381 | 1.3 × 10-1 | - 215 | [ |
Co1.5CrFeNi1.5Ti0.5Mo0.5 | - 493 | 2.0 × 10-1 | - 219 | [ |
Co1.5CrFeNi1.5Ti0.5Mo0.8 | - 551 | 4.1 × 10-1 | - 189 | [ |
45# steel | - 601 | 1.028 × 10-2 | - 343 | [ |
AlCoCr0.5FeNi | - 458 | 7.622 × 10-3 | - 161 | [ |
AlCoCr0.75FeNi | - 326 | 1.687 × 10-4 | - 276 | [ |
AlCoCrFeNi | - 270 | 7.113 × 10-5 | - 208 | [ |
AlCoCr1.5FeNi | - 163 | 2.455 × 10-5 | - 105 | [ |
AlCoCr2FeNi | - 357 | 3.177 × 10-4 | - 86 | [ |
304 SS | - 272 | 1.35 × 10-1 | 132 | [ |
CoCrFeNiMo0.1 | - 263 | 3.81 × 10-1 | - 638 | [ |
CoCrFeNiMo0.2 | - 131 | 7.2 × 10-2 | - 661 | [ |
CoCrFeNiMo0.3 | - 257 | 7.66 × 10-1 | - 656 | [ |
CoCrFeNiMo0.4 | - 261 | 8.2 × 10-2 | - 576 | [ |
CoCrFeNiMo0.5 | - 261 | 7.38 × 10-1 | - 536 | [ |
Ni-20Cr | - 350.1 | 1.41 × 10-3 | - | [ |
Ni-40Cr | - 270.6 | 1.35 × 10-4 | - | [ |
Table 5 Corrosion properties of NiCr1.5Mo0.1 alloy coating alongside other alloys reported in literature
Alloy | Ecorr (mV) | icorr (μA/cm2) | Epp (mV) | References |
---|---|---|---|---|
NiCr1.5Mo0.1 | - 185.7 | 4.52 × 10-3 | 101.9 | This work |
NiCr | - 180.2 | 9.91 × 10-2 | 339.8 | This work |
Co1.5CrFeNi1.5Ti0.5 | - 443 | 5.7 × 10-1 | - 219 | [ |
Co1.5CrFeNi1.5Ti0.5Mo0.1 | - 381 | 1.3 × 10-1 | - 215 | [ |
Co1.5CrFeNi1.5Ti0.5Mo0.5 | - 493 | 2.0 × 10-1 | - 219 | [ |
Co1.5CrFeNi1.5Ti0.5Mo0.8 | - 551 | 4.1 × 10-1 | - 189 | [ |
45# steel | - 601 | 1.028 × 10-2 | - 343 | [ |
AlCoCr0.5FeNi | - 458 | 7.622 × 10-3 | - 161 | [ |
AlCoCr0.75FeNi | - 326 | 1.687 × 10-4 | - 276 | [ |
AlCoCrFeNi | - 270 | 7.113 × 10-5 | - 208 | [ |
AlCoCr1.5FeNi | - 163 | 2.455 × 10-5 | - 105 | [ |
AlCoCr2FeNi | - 357 | 3.177 × 10-4 | - 86 | [ |
304 SS | - 272 | 1.35 × 10-1 | 132 | [ |
CoCrFeNiMo0.1 | - 263 | 3.81 × 10-1 | - 638 | [ |
CoCrFeNiMo0.2 | - 131 | 7.2 × 10-2 | - 661 | [ |
CoCrFeNiMo0.3 | - 257 | 7.66 × 10-1 | - 656 | [ |
CoCrFeNiMo0.4 | - 261 | 8.2 × 10-2 | - 576 | [ |
CoCrFeNiMo0.5 | - 261 | 7.38 × 10-1 | - 536 | [ |
Ni-20Cr | - 350.1 | 1.41 × 10-3 | - | [ |
Ni-40Cr | - 270.6 | 1.35 × 10-4 | - | [ |
Fig. 10 EIS plots of samples measured in 3.5 wt% NaCl solution at room temperature: a Nyquist plots, b Bode plots, and c equivalent electrical circuit diagram of NiCrxMoy alloy coatings
Alloy coatings | Rs (Ω cm2) | R1 (Ω cm2) | R2 (Ω cm2) | CPE1 parameters | CPE2 parameters | ||
---|---|---|---|---|---|---|---|
Y0-1 (10-5 Ω-1 cm-2 sn) | n1 | Y0-2 (10-5 Ω-1 cm-2 sn) | n2 | ||||
NiCr | 15.14 | 9.463 × 105 | 1.460 × 106 | 0.762 | 0.899 | 0.723 | 0.803 |
NiCrMo0.1 | 13.81 | 1.498 × 106 | 1.912 × 106 | 0.702 | 0.919 | 0.869 | 0.938 |
NiCrMo0.3 | 16.19 | 2.485 × 105 | 7.323 × 105 | 0.956 | 0.891 | 0.835 | 0.905 |
NiCr1.5 | 12.62 | 2.640 × 106 | 2.726 × 106 | 0.751 | 0.896 | 0.528 | 0.861 |
NiCr1.5Mo0.1 | 13.80 | 5.407 × 106 | 5.692 × 106 | 0.668 | 0.862 | 0.472 | 0.825 |
NiCr1.5Mo0.3 | 14.81 | 7.741 × 103 | 4.868 × 103 | 3.108 | 0.778 | 6.675 | 0.839 |
Table 6 Equivalent circuit parameters obtained by fitting the EIS results of NiCrxMoy alloy coatings in 3.5 wt% NaCl solution at room temperature
Alloy coatings | Rs (Ω cm2) | R1 (Ω cm2) | R2 (Ω cm2) | CPE1 parameters | CPE2 parameters | ||
---|---|---|---|---|---|---|---|
Y0-1 (10-5 Ω-1 cm-2 sn) | n1 | Y0-2 (10-5 Ω-1 cm-2 sn) | n2 | ||||
NiCr | 15.14 | 9.463 × 105 | 1.460 × 106 | 0.762 | 0.899 | 0.723 | 0.803 |
NiCrMo0.1 | 13.81 | 1.498 × 106 | 1.912 × 106 | 0.702 | 0.919 | 0.869 | 0.938 |
NiCrMo0.3 | 16.19 | 2.485 × 105 | 7.323 × 105 | 0.956 | 0.891 | 0.835 | 0.905 |
NiCr1.5 | 12.62 | 2.640 × 106 | 2.726 × 106 | 0.751 | 0.896 | 0.528 | 0.861 |
NiCr1.5Mo0.1 | 13.80 | 5.407 × 106 | 5.692 × 106 | 0.668 | 0.862 | 0.472 | 0.825 |
NiCr1.5Mo0.3 | 14.81 | 7.741 × 103 | 4.868 × 103 | 3.108 | 0.778 | 6.675 | 0.839 |
Fig. 12 XPS spectra of a O, b Cr, c Mo, d Ni e Fe elements in the passive film on NiCrxMoy (x = 1, 1.5; y = 0, 0.1) alloy coatings after potentiodynamic polarization tests in 3.5 wt% NaCl solution
Alloy coatings | Peak% | at.% | ||
---|---|---|---|---|
NiCr | Cr 2p3/2 | Crox | 54.8 | 8.8 |
Crhy | 45.2 | |||
Fe 2p3/2 | Fe2+ | 44.3 | 4.8 | |
Fe3+ | 55.7 | |||
Ni 2p3/2 | Ni0 | 8.8 | 2.6 | |
Niox | 55.1 | |||
Nihy | 36.1 | |||
O 1s | O2- | 43.3 | 83.8 | |
OH- | 35.1 | |||
H2O | 21.6 | |||
NiCrMo0.1 | Cr 2p3/2 | Crox | 56.8 | 9.3 |
Crhy | 43.2 | |||
Fe 2p3/2 | Fe2+ | 51.5 | 3.4 | |
Fe3+ | 48.5 | |||
Ni 2p3/2 | Niox | 79.4 | 3.2 | |
Nihy | 20.6 | |||
O 1s | O2- | 36.1 | 82.4 | |
OH- | 38.5 | |||
H2O | 25.4 | |||
Mo 3d5/2 | Mo4+ | 63.3 | 1.7 | |
Mo6+ | 36.7 | |||
NiCr1.5 | Cr 2p3/2 | Crox | 60.4 | 11.0 |
Crhy | 39.6 | |||
Fe 2p3/2 | Fe2+ | 49.5 | 3.0 | |
Fe3+ | 50.5 | |||
Ni 2p3/2 | Ni0 | 11.7 | 1.6 | |
Niox | 54.9 | |||
Nihy | 33.4 | |||
O 1s | O2- | 37.7 | 84.4 | |
OH- | 41.2 | |||
H2O | 21.1 | |||
NiCr1.5Mo0.1 | Cr 2p3/2 | Crox | 57.8 | 11.0 |
Crhy | 42.2 | |||
Fe 2p3/2 | Fe2+ | 53.6 | 4.0 | |
Fe3+ | 46.4 | |||
Ni 2p3/2 | Niox | 78.1 | 1.5 | |
Nihy | 21.9 | |||
O 1s | O2- | 32.8 | 81.8 | |
OH- | 46.3 | |||
H2O | 20.9 | |||
Mo 3d | Mo4+ | 44.8 | 1.6 | |
Mo6+ | 55.2 |
Table 7 Overall composition and percentages from the detailed XPS spectrum of the surface of NiCrxMoy (x = 1, 1.5; y = 0, 0.1) alloy coatings
Alloy coatings | Peak% | at.% | ||
---|---|---|---|---|
NiCr | Cr 2p3/2 | Crox | 54.8 | 8.8 |
Crhy | 45.2 | |||
Fe 2p3/2 | Fe2+ | 44.3 | 4.8 | |
Fe3+ | 55.7 | |||
Ni 2p3/2 | Ni0 | 8.8 | 2.6 | |
Niox | 55.1 | |||
Nihy | 36.1 | |||
O 1s | O2- | 43.3 | 83.8 | |
OH- | 35.1 | |||
H2O | 21.6 | |||
NiCrMo0.1 | Cr 2p3/2 | Crox | 56.8 | 9.3 |
Crhy | 43.2 | |||
Fe 2p3/2 | Fe2+ | 51.5 | 3.4 | |
Fe3+ | 48.5 | |||
Ni 2p3/2 | Niox | 79.4 | 3.2 | |
Nihy | 20.6 | |||
O 1s | O2- | 36.1 | 82.4 | |
OH- | 38.5 | |||
H2O | 25.4 | |||
Mo 3d5/2 | Mo4+ | 63.3 | 1.7 | |
Mo6+ | 36.7 | |||
NiCr1.5 | Cr 2p3/2 | Crox | 60.4 | 11.0 |
Crhy | 39.6 | |||
Fe 2p3/2 | Fe2+ | 49.5 | 3.0 | |
Fe3+ | 50.5 | |||
Ni 2p3/2 | Ni0 | 11.7 | 1.6 | |
Niox | 54.9 | |||
Nihy | 33.4 | |||
O 1s | O2- | 37.7 | 84.4 | |
OH- | 41.2 | |||
H2O | 21.1 | |||
NiCr1.5Mo0.1 | Cr 2p3/2 | Crox | 57.8 | 11.0 |
Crhy | 42.2 | |||
Fe 2p3/2 | Fe2+ | 53.6 | 4.0 | |
Fe3+ | 46.4 | |||
Ni 2p3/2 | Niox | 78.1 | 1.5 | |
Nihy | 21.9 | |||
O 1s | O2- | 32.8 | 81.8 | |
OH- | 46.3 | |||
H2O | 20.9 | |||
Mo 3d | Mo4+ | 44.8 | 1.6 | |
Mo6+ | 55.2 |
[1] |
Q.Y. Wang, S.L. Bai, Y.F. Zhang, Z.D. Liu, Appl. Surf. Sci. 308, 285(2014)
DOI URL |
[2] | P. Crook, Mater. Corros. 56, 606(2005) |
[3] | D.A. Walsh, L.E. Li, M.S. Bakare, K.T. Voisey, Electrochim. Acta 54, 24647 (2009) |
[4] | A. Milanti, V. Matikainen, G. Bolelli, H. Koivuluoto, L. Lusvarghi, P. Vuoristo, J. Therm. Spray Technol. 25, 1040(2016) |
[5] | Z.H. Wen, Y. Bai, J.F. Yang, J. Huang, L. Zhang, Surf. Coat. Technol. 281, 62(2015) |
[6] | J.J. Tian, Y.K. Wei, C.X. Li, G.J. Yang, C.J. Li, J. Therm. Spray Technol. 27, 232(2017) |
[7] | Y.X. Zhuang, X.L. Zhang, X.Y. Gu, J. Alloys Compd. 743, 514(2018) |
[8] | F. He, Z. Wang, M. Zhu, J. Li, Y. Dang, J. Wang, Mater. Des. 85, 1(2015) |
[9] | H. Zhang, Y. He, Y. Pan, Scr. Mater. 69, 342(2013) |
[10] | X.W. Qiu, Y.P. Zhang, L. He, C.G. Liu, J. Alloys Compd. 549, 195(2013) |
[11] | Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang, Y. Wu, Appl. Surf. Sci. 396, 1420(2017) |
[12] | X. Jiao, J. Wang, C. Wang, Z. Gong, X. Pang, S.M. Xiong, Opt. Lasers Eng. 110, 163(2018) |
[13] | X. Jiao, C. Wang, Z. Gong, G. Wang, H. Sun, H. Yang, Surf. Coat. Technol. 325, 643(2017) |
[14] | S. Liu, Z. Liu, Y. Wang, J. Tang, Corros. Sci. 83, 396(2014) |
[15] | Q.Y. Wang, X.Z. Wang, H. Luo, J.L. Luo, Surf. Coat. Technol. 291, 250(2016) |
[16] | X.Z. Li, Z.D. Liu, H.C. Li, Y.T. Wang, B. Li, Surf. Coat. Technol. 232, 627(2013) |
[17] | Y.L. Chou, J.W. Yeh, H.C. Shih, Corros. Sci. 52, 2571(2010) |
[18] | E. Sadeghimeresht, L. Reddy, T. Hussain, M. Huhtakangas, N. Markocsan, S. Joshi, Mater. Des. 148, 17(2018) |
[19] | C.J. Wang, Q.J. Chen, H.X. Xia, Trans. Nonferrous Met. Soc. China 27, 2663 (2017) |
[20] | A. Verma, J.B. Singh, N. Wanderka, J.K. Chakravartty, Acta Mater. 96, 366(2015) |
[21] | M. Zhang, L. Zhang, J. Fan, P. Yu, G. Li, Mater. Sci. Eng. A 752, 63 (2019) |
[22] | T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Charact. 70, 63(2012) |
[23] | Y.Q. Jiang, J. Li, Y.F. Juan, Z.J. Lu, W.L. Jia, J. Alloys Compd. 775, 1(2019) |
[24] | C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II (Wiley, New York, 1987) |
[25] | Y.J. Hsu, W.C. Chiang, J.K. Wu, Mater. Chem. Phys. 92, 112(2005) |
[26] | X.L. Shang, Z.J. Wang, Q.F. Wu, J.C. Wang, J.J. Li, J.K. Yu, Acta Metall. Sin.-Engl. Lett. 32, 41(2019) |
[27] |
W.Y. Zhang, C.M. Wang, Q. Song, H.Z. Cui, X.L. Feng, C.Z. Zhang, Metall. Mater. Trans. A 50, 5410 (2019)
DOI URL |
[28] | C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, A. Guenbour, Corros. Sci. 56, 114(2012) |
[29] | Z. Cui, L. Wang, H. Ni, W. Hao, C. Man, S. Chen, X. Wang, Z. Liu, X. Li, Corros. Sci. 118, 31(2017) |
[30] | Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, N. Birbilis, Mater. Des. 170, 107698(2019) |
[31] | B.E. Wilde, Corrosion 28, 283 (1972) |
[32] | S. Esmailzadeh, M. Aliofkhazraei, H. Sarlak, Prot. Met. Phys. Chem. Surf. 54, 976(2018) |
[33] | B. Wang, J. Liu, M. Yin, Y. Xiao, X.H. Wang, J.X. He, Mater. Corros. 67, 51(2016) |
[34] | A. Raza, S. Abdulahad, B. Kang, H.J. Ryu, S.H. Hong, Appl. Surf. Sci. 485, 368(2019) |
[35] | M. Atapour, H. Sarlak, M. Esmailzadeh, Int. J. Adv. Manuf. Technol. 83, 721(2016) |
[36] | E. McCafferty, Introduction to Corrosion Science (Springer, New York, 2010). https://doi.org/10.1007/978-1-4419-0455-3_12 |
[37] | L. Wei, Y. Liu, Q. Li, Y.F. Cheng, Corros. Sci. 146, 44(2019) |
[38] | Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119, 33(2017) |
[39] |
A. Igual Muñoz, J. García Antón, J.L. Guiñón, V. Pérez Herranz, Corros. Sci. 49, 3200(2007)
DOI URL |
[40] |
A. Carnot, I. Frateur, S. Zanna, B. Tribollet, I. Dubois-Brugger, P. Marcus, Corros. Sci. 45, 2513(2003)
DOI URL |
[41] |
M.A. Rodríguez, R.M. Carranza, R.B. Rebakb, J. Electrochem. Soc. 157, C1(2010)
DOI URL |
[42] |
G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176, 275(1984)
DOI URL |
[43] |
Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Corros. Sci. 150, 218(2019)
DOI URL |
[44] | A. Mishra, Acta Metall. Sin.-Engl. Lett. 30, 326(2017) |
[45] |
G. Okamoto, Corros. Sci. 13, 471(1973)
DOI URL |
[46] | G. Okamoto, T. Shibata, Nature 206, 1350 (1965) |
[47] | W.P. Tian, H.W. Yang, S.D. Zhang, Acta Metall. Sin.-Engl. Lett. 31, 308(2018) |
[48] |
R. Awasthi, G. Abraham, S. Kumar, K. Bhattacharyya, N. Keskar, R.P. Kushwaha, R. Rao, R. Tewari, D. Srivastava, G.K. Dey, Metall. Mater. Trans. A 48, 2915 (2017)
DOI URL |
[49] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564(1992)
DOI URL |
[50] |
Y.F. Juan, J. Li, Y.Q. Jiang, W.L. Jia, Z.J. Lu, Appl. Surf. Sci. 465, 700(2019)
DOI URL |
[1] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[2] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[3] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[4] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[5] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[6] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[7] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[8] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[9] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[10] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[11] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[12] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[13] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[14] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[15] | Bang Dou, Hui Zhang, Jia-Hao Zhu, Ben-Qi Xu, Zi-Yi Zhou, Ji-Li Wu. Uniformly Dispersed Carbide Reinforcements in the Medium-Entropy High-Speed Steel Coatings by Wide-Band Laser Cladding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1145-1150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||