Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (9): 1201-1216.DOI: 10.1007/s40195-020-01023-1
Previous Articles Next Articles
Dan-Yang Liu1,2,3, Jin-Feng Li1,3(), Yong-Cheng Lin2(
), Peng-Cheng Ma4, Yong-Lai Chen4, Xu-Hu Zhang4, Rui-Feng Zhang1
Received:
2019-09-29
Revised:
2019-11-15
Online:
2020-09-10
Published:
2020-09-17
Contact:
Jin-Feng Li,Yong-Cheng Lin
Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216.
Add to citation manager EndNote|Ris|BibTeX
Alloy | Cu/Li ratio | Cu | Li | Mg | Mn | Zr | Al |
---|---|---|---|---|---|---|---|
Alloy A | 0.44 | 1.08 | 2.43 | 0.42 | 0.35 | 0.12 | Bal. |
Alloy B | 1.65 | 2.78 | 1.68 | 0.43 | 0.32 | 0.12 | Bal. |
Alloy C | 4.20 | 3.82 | 0.91 | 0.42 | 0.32 | 0.12 | Bal. |
Table 1 Actual chemical composition of the prepared Al-xCu-yLi-Mg alloys (wt%)
Alloy | Cu/Li ratio | Cu | Li | Mg | Mn | Zr | Al |
---|---|---|---|---|---|---|---|
Alloy A | 0.44 | 1.08 | 2.43 | 0.42 | 0.35 | 0.12 | Bal. |
Alloy B | 1.65 | 2.78 | 1.68 | 0.43 | 0.32 | 0.12 | Bal. |
Alloy C | 4.20 | 3.82 | 0.91 | 0.42 | 0.32 | 0.12 | Bal. |
AT (h) | Cu/Li = 0.44 (low Cu/Li ratio) | AT (h) | Cu/Li = 1.65 (medium Cu/Li ratio) | AT (h) | Cu/Li = 4.20 (high Cu/Li ratio) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DCM | MID (μm) | AID (μm) | DCM | MID (μm) | AID (μm) | DCM | MID (μm) | AID (μm) | |||
0.25 | Pitting | - | - | 0.25 | LIGC | 168.8 | 80.7 | 0.25 | LIGC | 261.3 | 166.3 |
0.5 | LIGC | 34.3 | 21.6 | 0.5 | GIGC | 206.3 | 140.3 | 0.5 | LIGC | 314.2 | 238.5 |
2 | LIGC | 53.2 | 44.5 | 2 | GIGC | 335.3 | 141.4 | 2 | GIGC | 358.1 | 276.1 |
4 | LIGC | 66.5 | 50.0 | 4 | GIGC | 356.4 | 215.7 | 4 | GIGC | 380.9 | 233.1 |
6 | LIGC | 110.8 | 70.5 | 6 | GIGC | 208.6 | 135.7 | 6 | GIGC | 301.5 | 223.9 |
8 | LIGC | 181.7 | 133.8 | 8 | GIGC | 284.2 | 203.1 | 8 | LIGC | 309.5 | 262.6 |
18 | LIGC | 106.1 | 72.3 | 12 | LIGC | 106.1 | 80.5 | 12 | LIGC&P | < 10 | < 5 |
32 | LIGC | 59.7 | 45.8 | 18 | LIGC | 90.2 | 52.9 | 26 | Pitting | - | - |
72 | LIGC&P | 52.7 | 453 | 26 | Pitting | - | - | 66 | Pitting | - | - |
100 | LIGC&P | 58.6 | 33.4 | 42 | Pitting | - | - | 80 | LIGC&P | < 10 | < 5 |
168 | LIGC&P | 80.3 | 64.5 | 54 | Pitting | - | - | 100 | LIGC&P | < 10 | < 5 |
198 | Pitting | - | - | 76 | Pitting | - | - |
Table 2 Statistical table of corrosion type and intergranular corrosion depth in Al-xCu-yLi-Mg alloys with different Cu/Li ratios aged at 175 °C
AT (h) | Cu/Li = 0.44 (low Cu/Li ratio) | AT (h) | Cu/Li = 1.65 (medium Cu/Li ratio) | AT (h) | Cu/Li = 4.20 (high Cu/Li ratio) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DCM | MID (μm) | AID (μm) | DCM | MID (μm) | AID (μm) | DCM | MID (μm) | AID (μm) | |||
0.25 | Pitting | - | - | 0.25 | LIGC | 168.8 | 80.7 | 0.25 | LIGC | 261.3 | 166.3 |
0.5 | LIGC | 34.3 | 21.6 | 0.5 | GIGC | 206.3 | 140.3 | 0.5 | LIGC | 314.2 | 238.5 |
2 | LIGC | 53.2 | 44.5 | 2 | GIGC | 335.3 | 141.4 | 2 | GIGC | 358.1 | 276.1 |
4 | LIGC | 66.5 | 50.0 | 4 | GIGC | 356.4 | 215.7 | 4 | GIGC | 380.9 | 233.1 |
6 | LIGC | 110.8 | 70.5 | 6 | GIGC | 208.6 | 135.7 | 6 | GIGC | 301.5 | 223.9 |
8 | LIGC | 181.7 | 133.8 | 8 | GIGC | 284.2 | 203.1 | 8 | LIGC | 309.5 | 262.6 |
18 | LIGC | 106.1 | 72.3 | 12 | LIGC | 106.1 | 80.5 | 12 | LIGC&P | < 10 | < 5 |
32 | LIGC | 59.7 | 45.8 | 18 | LIGC | 90.2 | 52.9 | 26 | Pitting | - | - |
72 | LIGC&P | 52.7 | 453 | 26 | Pitting | - | - | 66 | Pitting | - | - |
100 | LIGC&P | 58.6 | 33.4 | 42 | Pitting | - | - | 80 | LIGC&P | < 10 | < 5 |
168 | LIGC&P | 80.3 | 64.5 | 54 | Pitting | - | - | 100 | LIGC&P | < 10 | < 5 |
198 | Pitting | - | - | 76 | Pitting | - | - |
Fig. 3 Typical morphology of corrosion in Al-Cu-Li-Mg alloys with different Cu/Li ratios: a Alloy A, low Cu/Li ratio, IA (2 h), LIGC; b Alloy B, medium Cu/Li ratio, IA (2 h), GIGC; c Alloy C, high Cu/Li ratio, IA (2 h), GIGC; d Alloy A, low Cu/Li ratio, UA (6 h), LIGC; e Alloy B, medium Cu/Li ratio, UA (6 h), GIGC; f Alloy C, high Cu/Li ratio, UA (6 h), GIGC; g Alloy A, low Cu/Li ratio, PA (24 h), LIGC; h Alloy B, medium Cu/Li ratio, PA (24 h), pitting; i Alloy C, high Cu/Li ratio, PA (24 h), pitting; j Alloy A, low Cu/Li ratio, OA (100 h), pitting; k Alloy B, medium Cu/Li ratio, OA (100 h), pitting; l Alloy C, high Cu/Li ratio, OA (100 h), pitting
Fig. 4 Corrosion morphology of the cross section of the Al-xCu-yLi-Mg alloys with different Cu/Li ratios aged at 175 °C: a LIGC; b GIGC; c Pitting; d LIGC&P
Fig. 5 IGC corrosion depth of Al-Cu-Li-Mg alloys with different Cu/Li ratios aged at 175 °C on different aging time points: a maximum IGC corrosion depth (MID); b average IGC corrosion depth (AID)
Fig. 6 TF curves and the OCP curves of Al-Cu-Li-Mg alloys with different Cu/Li ratios aged at 175 °C under different aging time points: a low Cu/Li ratio, Alloy A; b medium Cu/Li ratio, Alloy B; c high Cu/Li ratio, Alloy C; d OCP curves of these different Cu/Li ratios alloys
Fig. 7 TEM images of Al-Cu-Li-Mg alloys with different Cu/Li ratios aged at 175 °C on under-aging condition (6 h): a low Cu/Li ratio, Alloy A, DF, <100>Al; b low Cu/Li ratio, Alloy A, DF, <100>Al; c medium Cu/Li ratio, Alloy B, DF, <100>Al; d medium Cu/Li ratio, Alloy B, DF, <112>Al; e high Cu/Li ratio, Alloy C, BF, <100>Al; f high Cu/Li ratio, Alloy C, DF, <112>Al
Fig. 8 TEM images of Al-Cu-Li-Mg alloys with different Cu/Li ratios aged at 175 °C on peak aging condition (18 h): a low Cu/Li ratio, Alloy A, DF, <100>Al; b low Cu/Li ratio, Alloy A, DF, <100>Al; c medium Cu/Li ratio, Alloy B, DF, <100>Al; d medium Cu/Li ratio, Alloy B, DF, <112>Al; e high Cu/Li ratio, Alloy C, DF, <100>Al; f high Cu/Li ratio, Alloy C, DF, <112>Al
Fig. 9 TEM images of Al-Cu-Li-Mg alloys with different Cu/Li ratios aged at 175 °C on over-aging condition (66 h): a low Cu/Li ratio, Alloy A, DF, <100>Al; b low Cu/Li ratio, Alloy A, DF, <100>Al; c medium Cu/Li ratio, Alloy B, DF, <100>Al; d medium Cu/Li ratio, Alloy B, DF, <112>Al; e high Cu/Li ratio, Alloy C, DF, <100>Al; f high Cu/Li ratio, Alloy C, DF, <112>Al
Precipitates type | Alloy C High Cu/Li ratio | Alloy B Medium Cu/Li ratio | Alloy A Low Cu/Li ratio |
---|---|---|---|
Major precipitates | T1 phase, θ′ phase | δ′ phase, T1 phase, θ′ phase | δ′ phase |
Minor precipitates | S′ phase | S′ phase | T1 phase, S′ phase |
Precipitates at GB | A few T1 phase | Some T1 phase and coarse phase | A great many of T1 phase and coarse phase |
Table 3 Microstructure characteristics of the Al-xCu-yLi-Mg alloys with different Cu/Li ratios under peak aging condition
Precipitates type | Alloy C High Cu/Li ratio | Alloy B Medium Cu/Li ratio | Alloy A Low Cu/Li ratio |
---|---|---|---|
Major precipitates | T1 phase, θ′ phase | δ′ phase, T1 phase, θ′ phase | δ′ phase |
Minor precipitates | S′ phase | S′ phase | T1 phase, S′ phase |
Precipitates at GB | A few T1 phase | Some T1 phase and coarse phase | A great many of T1 phase and coarse phase |
[1] | J.P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, J.C. Beddoes, Mater. Charact. 35, 41 (1995) |
[2] | J. Ma, D.S. Yan, L.J. Rong, Y.Y. Li, Acta Metall. Sin. Engl. Lett. 28, 454 (2015) |
[3] | V.I. Elagin, V.V. Zakharov, Met. Sci. Heat Treat. 55, 184 (2013) |
[4] | Y.P. Tang, S. Hirosawa, S. Saikawa, K. Matsuda, S. Lee, Z. Horita, D. Terada, Adv. Eng. Mater. 33, 1900561 (2019) |
[5] | K.D. Woo, S.W. Kim, J. Mater. Sci. 37, 411 (2002) |
[6] | F. Zhang, J. Shen, X.D. Yan, J.L. Sun, N. Jiang, H. Zhou, Acta Metall. Sin. 50, 691 (2014) |
[7] | S. Hirosawa, T. Sato, A. Kamio, H.M. Flower, Acta Mater. 48, 1797 (2000) |
[8] | Z. Gao, J.H. Chen, S.Y. Duan, X.B. Yang, C.L. Wu, Acta Metall. Sin. Engl. Lett. 29, 94 (2016) |
[9] |
Y. Ma, H. Wu, X. Zhou, K. Li, Y. Liao, Z. Liang, L. Liu, Corros. Sci. (2019). https://doi.org/10.1016/j.corsci.2019.108110
URL PMID |
[10] | M.X. Milagre, U. Donatus, C.S.C. Machado, J.V.S. Araujo, R.M.P. da Silva, B.V.G. de Viveiros, A. Astarita, I. Costa, Corros. Eng. Sci. Technol. 54, 402 (2019) |
[11] | T.J. Konno, Met. Mater. Int. 10, 213 (2004) |
[12] |
J.C. Huang, A.J. Ardell, Acta Metall. 36, 2995 (1988)
DOI URL |
[13] |
A.A. Alekseev, E.A. Lukina, Y.Y. Klochkova, Phys. Met. Metallog. 114, 481 (2013)
DOI URL |
[14] |
J. Goebel, T. Ghidini, A.J. Graham, Mater. Sci. Eng. A 673, 16 (2016)
DOI URL |
[15] |
R. Zhang, Y. Zhang, Y. Yan, S. Thomas, C.H.J. Daviesd, N. Birbilis, Corros. Sci. 126, 324 (2017)
DOI URL |
[16] |
Y. Lin, Z.Q. Zheng, S.C. Li, X. Kong, Y. Han, Mater. Charact. 84, 88 (2013)
DOI URL |
[17] |
X.L. Zhang, G.H. Wu, L. Zhang, C.C. Shi, J. Alloys Compd. 788, 367 (2019)
DOI URL |
[18] |
S.G. Wang, Y. Huang, L. Zhao, Chin. J. Aeronaut. 31, 363 (2018)
DOI URL |
[19] | H. Ovri, E.A. Jagle, A. Stark, E.T. Lilleodden, Mater. Sci. Eng. A 637, 162 (2015) |
[20] |
S.F. Zhang, W.D. Zeng, W.H. Yang, C.L. Shi, H.J. Wang, Mater. Des. 63, 368 (2014)
DOI URL |
[21] |
J. Entringer, M. Reimann, A. Norman, J.F. dos Santos, J. Mater. Res. Technol. 8, 2031 (2019)
DOI URL |
[22] |
V. Araullo-Peters, B. Gault, F. de Geuser, A. Deschamps, J.M. Cairney , Acta Mater. 66, 199 (2014)
DOI URL |
[23] | B. Decreus, F. De Geuser, A. Deschamps, P. Donnadieu, C. Sigli, Solid Phase Transf. Inorg. Mater. Pts 172-174(267), 1-2 (2011) |
[24] |
Y.L. Ma, X.R. Zhou, X.M. Meng, W.J. Huang, Y. Liao, X.L. Chen, Y.N. Yi, X.X. Zhang, G.E. Thompson, Trans. Nonferrous Metal. Soc. 26, 1472 (2016)
DOI URL |
[25] |
D.Y. Liu, F.J. Sang, J.F. Li, N. Birbilis, Z.X. Wang, Y.L. Ma, R.F. Zhang, Mater. Charact. (2019). https://doi.org/10.1016/j.matchar.2019.109981
URL PMID |
[26] |
J.V.D. Araujo, A.D.S. Bugarin, U. Donatus, C.D.C. Machado, F.M. Queiroz, M. Terada, A. Astarita, I. Costa, Corros. Eng. Sci. Technol. 54, 575 (2019)
DOI URL |
[27] |
Y. Ma, X. Zhou, W. Huang, Y. Liao, X. Chen, X. Zhang, G.E. Thompson, Corros. Eng. Sci. Technol. 50, 420 (2015)
DOI URL |
[28] |
W.J. Liang, Q.L. Pan, Y.B. He, Y.C. Li, Y.C. Zhou, C.G. Lu, Rare Met. 27, 146 (2008)
DOI URL |
[29] |
J.F. Li, N. Birbilis, D.Y. Liu, Y.L. Chen, X.H. Zhang, C. Cai, Corros. Sci. 105, 44 (2016)
DOI URL |
[30] |
V. Proton, J. Alexis, E. Andrieu, J. Delfosse, A. Deschamps, F. De Geuser, M.C. Lafont, C. Blanc, Corros. Sci. 80, 494 (2014)
DOI URL |
[31] |
V.S. Sinyavskii, A.M. Semenov, Prot. Met. 38, 132 (2002)
DOI URL |
[32] |
E. Ghanbari, A. Saatchi, X.W. Lei, D.D. Macdonald, Materials 12, 1786 (2019)
DOI URL |
[33] |
A. Abd El-Aty, S.H. Zhang, Y. Xu, S. Ha, J. Mater. Res. Technol. 8, 1235 (2019)
DOI URL |
[34] |
H.Y. Li, W.C. Yu, X.Y. Wang, R. Du, W. You, Metals 8, 1010 (2018)
DOI URL |
[35] |
S.L. Yang, J. Shen, X.D. Yan, X.W. Li, F. Zhang, B.Q. Sun, Rare Met. Mater. Eng. 46, 28 (2017)
DOI URL |
[36] |
B. Chen, C.H. Li, S.C. He, X.L. Li, C. Lu, J. Mater. Res. 29, 1344 (2014)
DOI URL |
[37] |
A.A. Csontos, E.A. Starke, Metall. Mater. Trans. A 31, 1965 (2000)
DOI URL |
[38] |
B. Decreus, A. Deschamps, F.D. Geuser, P. Donnadieu, C. Sigli, M. Weyland, Acta Mater. 61, 2207 (2013)
DOI URL |
[39] |
D.Y. Liu, J.F. Li, Y.L. Ma, R.K. Gupta, N. Birbilis, R. Zhang, Corros. Sci. 145, 220 (2018)
DOI URL |
[40] |
N. Ott, S.K. Kairy, Y.M. Yan, N. Birbilis, Metall. Mater. Trans. A 48, 51 (2017)
DOI URL |
[41] |
J.F. Li, L. Xu, C. Cai, Y.L. Chen, X.H. Zhang, Z.Q. Zheng, Metall. Mater. Trans. A 45, 5736 (2014)
DOI URL |
[42] |
K.L. Moore, J.M. Sykes, S.C. Hogg, P.S. Grant, Corros. Sci. 50, 3221 (2008)
DOI URL |
[43] |
R. Khatami, A.A. Fattah, M.K. Keshavarz, J. Alloys Compd. 708, 316 (2017)
DOI URL |
[44] |
N. Birbilis, R.G. Buchheit, J. Electrochem. Soc. 152, B140 (2005)
DOI URL |
[45] |
R.G. Buchheit, J.P. Moran, G.E. Stoner, Corrosion 50, 120 (1994)
DOI URL |
[46] |
M. Eddahbi, C.B. Thomson, F. Carreno, O.A. Ruano, Mater. Sci. Eng. A 284, 292 (2000)
DOI URL |
[47] |
S.P. Lynch, A.R. Wilson, R.T. Byrnes, Mater. Sci. Eng. A 172, 79 (1993)
DOI URL |
[48] |
J.J. de Damborenea, A. Conde, Br. Corros. J. 35, 48 (2000)
DOI URL |
[49] |
Y.J. Deng, J.H. Bai, X.D. Wu, G.J. Huang, L.F. Cao, L. Huang, J. Alloys Compd. 723, 661 (2017)
DOI URL |
[50] |
W.A. Cassada, G.J. Shiflet, E.A. Starke, Metall. Trans. A 22, 287 (1991)
DOI URL |
[51] |
M. Murayama, K. Hono, Scr. Mater. 44, 701 (2001)
DOI URL |
[52] | L. Bourgeois, C. Dwyer, M. Weyland, J.F. Nie, B.C. Muddle, Acta Mater. 59, 704 (2011) |
[53] |
I. Hausler, R.D. Kamachali, W. Hetaba, B. Skrotzki, Materials (2019). https://doi.org/10.3390/ma12010030
URL PMID |
[54] | X.Y. Wei, Z.Q. Zheng, L.J. She, Q.N. Chen, S.C. Li, Rare Met. Mater. Eng. 39, 1583 (2010) |
[55] |
X.X. Zhang, X. Zhou, T. Hashimoto, J. Lindsay, O. Cillca, C. Luo, Z. Sun, X. Zhang, Z. Tang, Corros. Sci. 116, 14 (2017)
DOI URL |
[56] | J.V.D. Araujo, U. Donatus, F.M. Queriroz, M. Terada, M.X. Milagre, M.C. de Alencar, I. Costa, Corros. Sci. 133, 132 (2018) |
[57] |
Y. Ma, X. Zhou, K. Li, S. Pawar, Y. Liao, Z. Jin, Z. Wang, H. Wu, Z. Liang, L. Liu, J. Electrochem. Soc. 166, C296 (2019)
DOI URL |
[58] | Y.L. Zou, X. Chen, B. Chen, J. Mater. Res. 33, 1011 (2018) |
[59] |
X.W. Lei, A. Saatchi, E. Ghanbari, R.Z. Dang, W.Z. Li, N. Wang, D.D. Macdonald, Materials (2019). https://doi.org/10.3390/ma12101600
URL PMID |
[60] |
C. Luo, X.X. Zhang, X.R. Zhou, Z.H. Sun, X.Y. Zhang, Z.H. Tang, F. Lu, G.E. Thompson, J. Mater. Eng. Perform. 25, 1811 (2016)
DOI URL |
[61] |
X.X. Zhang, X.R. Zhou, T. Hashimoto, B. Liu, C. Luo, Z.H. Sun, Z.H. Tang, F. Lu, Y.L. Ma, Corros. Sci. 132, 1 (2018)
DOI URL |
[62] |
T. Ramgopal, P.I. Gouma, G.S. Frankel, Corrosion 58, 687 (2002)
DOI URL |
[63] | J.F. Li, W.J. Chen, X.S. Zhao, W.D. Wen, Z.Q. Zheng, Trans. Nonferrous Metal. Soc. 16, 1171 (2006) |
[64] | R.G. Buchheit, J.P. Moran, G.E. Stoner, Corrosion 46, 610 (1990) |
[65] |
C. Kumai, J. Kusinski, G. Thomas, T.M. Devine, Corrosion 45, 294 (1989)
DOI URL |
[66] |
V. Singh, A.K. Mukhopadhyay, K.S. Prasad, Scr. Mater. 37, 1519 (1997)
DOI URL |
[67] |
W. Huang, Y. Ma, X. Zhou, X. Meng, Y. Liao, L. Chai, Y. Yi, X. Zhang, Surf. Interface Anal. 48, 838 (2015)
DOI URL |
[68] | T. Dorin, A. Deschamps, F. De Geuser, F. Robaut, Mater. Sci. Eng. A 627, 51 (2015) |
[69] |
C. Luo, X. Zhou, G.E. Thompson, A.E. Hughes, Corros. Sci. 61, 35 (2012)
DOI URL |
[1] | Yuan Yu, Peiying Shi, Kai Feng, Jiongjie Liu, Jun Cheng, Zhuhui Qiao, Jun Yang, Jinshan Li, Weimin Liu. Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1077-1090. |
[2] | Ibrahim Ondicho, Bernard Alunda, Dicken Owino, Luke Otieno, Melody Chepkoech. Revealing a Transformation-Induced Plasticity (TRIP) Phenomenon in a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1159-1165. |
[3] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[4] | Jian-Guo Chen, Chen-Xi Liu, Chen Wei, Yong-Chang Liu, Hui-Jun Li. Effects of Isothermal Aging on Microstructure and Mechanical Property of Low-Carbon RAFM Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1151-1160. |
[5] | Hai-Cun Yu, Zhao-Zhen Cai, Gui-Qin Fu, Miao-Yong Zhu. Effect of V-Ti Addition on Microstructure Evolution and Mechanical Properties of Hot-Rolled Transformation-Induced Plasticity Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 352-360. |
[6] | Yu Chen, Rui Zhang, Tao Zhou, Li Hu, Jian Tu, Lai-Xin Shi, Yan Zhi, Li-Wei Lu, Qiang Chen, Ben-Hong Liao, Lei Liu, Wen-Jun Ge, Jing Xiao, Ming-Bo Yang. Influence of Extrusion Speed on the Microstructure Evolution, Interface Bonding and Mechanical Response of Mg MB26/Al 7075 Composite Rod [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(2): 253-262. |
[7] | Yan-Sen Hao, Wan-Chun Liu, Zhen-Yu Liu. Microstructure Evolution and Strain-Dependent Constitutive Modeling to Predict the Flow Behavior of 20Cr-24Ni-6Mo Super-Austenitic Stainless Steel During Hot Deformation [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 401-414. |
[8] | Jun Zhang, Cheng-Wu Zheng, Dian-Zhong Li. A Multi-phase Field Model for Static Recrystallization of Hot Deformed Austenite in a C-Mn Steel [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 208-215. |
[9] | Hong-Xiang Jiang, Jiu-Zhou Zhao. Solidification of Immiscible Alloys Under the Effect of Electric and Magnetic Fields [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1240-1248. |
[10] | Yong-Da Ye, Xiao-Pei Li, Zhi-Yan Sun, Hai-Bo Wang, Guo-Yi Tang. Enhanced Surface Mechanical Properties and Microstructure Evolution of Commercial Pure Titanium Under Electropulsing-Assisted Ultrasonic Surface Rolling Process [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1272-1280. |
[11] | Hong-Min Jia, Xiao-Hui Feng, Yuan-Sheng Yang. Microstructure Evolution and Growth Orientation of Directionally Solidified Mg-4 wt% Zn Alloy with Different Growth Rates [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1185-1191. |
[12] | Feng Li, Yang Liu, Xubo Li. Microstructure Evolution and Deformation Behavior of AZ31 Magnesium Alloy During Alternate Forward Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1135-1144. |
[13] | Xin-Xiang Yu, Yi-Ran Zhang, Deng-Feng Yin, Zhi-Ming Yu, Shu-Fei Li. Characterization of Hot Deformation Behavior of a Novel Al-Cu-Li Alloy Using Processing Maps [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(7): 817-825. |
[14] | Sun Chao, Yang Shanwu, Liu Guoliang. Evolution of Microstructures of a Low Carbon Bainitic Steel Held at High Service Temperature [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 436-443. |
[15] | Tian LIANG, Xiaoqiang HU, Xiuhong KANG, Dianzhong LI. Microstructure Evolution of a Cold-rolled 25Cr-7Ni-3Mo-0.2N Duplex Stainless Steel during Two-step Aging Treatments [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 517-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||