Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (8): 1033-1045.DOI: 10.1007/s40195-020-01045-9
Previous Articles Next Articles
Rui-Xuan Li1, Jun-Wei Qiao2, Peter K. Liaw3, Yong Zhang1()
Received:
2019-12-27
Revised:
2020-02-08
Online:
2020-08-10
Published:
2020-08-06
Contact:
Yong Zhang
Rui-Xuan Li, Jun-Wei Qiao, Peter K. Liaw, Yong Zhang. Preternatural Hexagonal High-Entropy Alloys: A Review[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1033-1045.
Add to citation manager EndNote|Ris|BibTeX
Alloy | Structure | Applied field | $\left| {{\Delta }S_{{\text{M}}} } \right|$ (J/kg/K) | RC (J/kg) | References | |||||
---|---|---|---|---|---|---|---|---|---|---|
FeCoNi1.5Cr0.5Al | BCC | 70 kOe | 0.674 | 242.6 | [ | |||||
Fe26.7Ni26.7Ga15.6Mn20Si11 | BCC | 2 T | 1.59 | 75.86 | [ | |||||
Fe25Co25Ni25Mo5P10B10 | BMG | 5 T | 1.88 | 310.2 | [ | |||||
Gd20Ho20Er20Al20Co20 | BMG | 5 T | 10.2 | 625 | [ | |||||
Gd20Tb20Dy20Al20Co20 | BMG | 5 T | 9.43 | 632 | [ | |||||
Gd25Ho25Co25Al25 | BMG | 5 T | 9.78 | 626 | [ | |||||
Dy20Er20Gd20Ho20Tb20 | HCP | 5 T | 8.6 | 627 | [ |
Table 1 A collection of magnetocalorific HEAs with different structures in recent years
Alloy | Structure | Applied field | $\left| {{\Delta }S_{{\text{M}}} } \right|$ (J/kg/K) | RC (J/kg) | References | |||||
---|---|---|---|---|---|---|---|---|---|---|
FeCoNi1.5Cr0.5Al | BCC | 70 kOe | 0.674 | 242.6 | [ | |||||
Fe26.7Ni26.7Ga15.6Mn20Si11 | BCC | 2 T | 1.59 | 75.86 | [ | |||||
Fe25Co25Ni25Mo5P10B10 | BMG | 5 T | 1.88 | 310.2 | [ | |||||
Gd20Ho20Er20Al20Co20 | BMG | 5 T | 10.2 | 625 | [ | |||||
Gd20Tb20Dy20Al20Co20 | BMG | 5 T | 9.43 | 632 | [ | |||||
Gd25Ho25Co25Al25 | BMG | 5 T | 9.78 | 626 | [ | |||||
Dy20Er20Gd20Ho20Tb20 | HCP | 5 T | 8.6 | 627 | [ |
Alloy | Melting point (°C) | Density (g/cm3) | Structure | Phase stable condition | References |
---|---|---|---|---|---|
Ir26Mo20Rh22.5Ru20W11.5 | 2459 | 15.37 | HCP | Annealing at 2373 K for 1 h | [ |
Ir25.5Mo20Rh20Ru25W9.5 | 2444 | 15.18 | HCP | Annealing at 2373 K for 1 h | [ |
Ir29.0678Mo15Rh29.0678Ru11.8644W15 | 2463 | 16.07 | HCP | Annealing at 1273 K for 2000 h | [ |
Hf25Nb25Ti25Zr25 | 2039 | 8.4 | BCC | Annealing at 1573 K for 6 h | [ |
Nb25Mo25Ta25W25 | 2904 | 13.64 | BCC | Annealing at 1673 K for 19 h | [ |
Nb20Mo20Ta20W20V20 | 2673 | 12.36 | BCC | Annealing at 1673 K for 19 h | [ |
Ti20Zr20Hf20Nb20Ta20 | 2231 | 9.94 | BCC | HIPing at 1473 K, 207 MPa for 3 h | [ |
Mo20Nb20Ta20Ti20V20 | 2341 | 9.27 | BCC | Stable at 516-2162 °C by CALPHAD | [ |
Table 2 Comparison of different refractory high-entropy alloys
Alloy | Melting point (°C) | Density (g/cm3) | Structure | Phase stable condition | References |
---|---|---|---|---|---|
Ir26Mo20Rh22.5Ru20W11.5 | 2459 | 15.37 | HCP | Annealing at 2373 K for 1 h | [ |
Ir25.5Mo20Rh20Ru25W9.5 | 2444 | 15.18 | HCP | Annealing at 2373 K for 1 h | [ |
Ir29.0678Mo15Rh29.0678Ru11.8644W15 | 2463 | 16.07 | HCP | Annealing at 1273 K for 2000 h | [ |
Hf25Nb25Ti25Zr25 | 2039 | 8.4 | BCC | Annealing at 1573 K for 6 h | [ |
Nb25Mo25Ta25W25 | 2904 | 13.64 | BCC | Annealing at 1673 K for 19 h | [ |
Nb20Mo20Ta20W20V20 | 2673 | 12.36 | BCC | Annealing at 1673 K for 19 h | [ |
Ti20Zr20Hf20Nb20Ta20 | 2231 | 9.94 | BCC | HIPing at 1473 K, 207 MPa for 3 h | [ |
Mo20Nb20Ta20Ti20V20 | 2341 | 9.27 | BCC | Stable at 516-2162 °C by CALPHAD | [ |
Slip direction | Slip plane | Slip system | Independent slip number | |
---|---|---|---|---|
a | Basal | 0001 〈11$\overline{2}$0〉 | 2 | |
Prismatic | 1$\overline{1}$00 〈11$\overline{2}$0〉 | 2 | ||
Pyramidal | 1$\overline{1}$01〈11$\overline{2}$0〉 | 4 | ||
c | Prismatic | hki0 [ | ||
c + a | Pyramidal | hkil〈11$\overline{2}$3〉 | 5 |
Table 3 Different slipping modes in HCP alloys
Slip direction | Slip plane | Slip system | Independent slip number | |
---|---|---|---|---|
a | Basal | 0001 〈11$\overline{2}$0〉 | 2 | |
Prismatic | 1$\overline{1}$00 〈11$\overline{2}$0〉 | 2 | ||
Pyramidal | 1$\overline{1}$01〈11$\overline{2}$0〉 | 4 | ||
c | Prismatic | hki0 [ | ||
c + a | Pyramidal | hkil〈11$\overline{2}$3〉 | 5 |
Published year | Composition | Structure | c/a | References |
---|---|---|---|---|
2013 | Co25Os25Re25Ru25 | HCP (predicted) | None | [ |
2014 | Y20Gd20Tb20Dy20Lu20 | HCP + OMP | 1.574 | [ |
2014 | Gd20Tb20Dy20Tm20Lu20 | HCP + OMP | 1.574 | [ |
2014 | Ho20Dy20Y20Gd20Tb20 | HCP | 1.579 | [ |
2014 | Al20Li20Mg20Sc20Ti20 | HCP (annealing) | 1.588 | [ |
2015 | Co25Fe25Re25Ru25 | HCP | 1.581 | [ |
2015 | Co25Re25Ru25V25 | HCP + OMP | 1.606 | [ |
2016 | Sc16.67Y16.67La16.67Ti16.67Zr16.67Hf16.67 | Dual HCP | 1.583/1.575 | [ |
2016 | Gd20Ho20La20Tb20Y20 | HCP | 1.589 | [ |
2017 | Al15Hf25Sc10Ti25Zr25 | HCP + OMP | 1.585 | [ |
2017 | Ir19Os22Re21Rh20Ru19 | HCP | 1.590 | [ |
2017 | Gd20Dy20Er20Ho20Tb20 | HCP | 1.578 | [ |
2017 | Co20Cr20Fe20Mn20Ni20 | HCP (high pressure) | 1.620 | [ |
2017 | Co20Cr26Fe20Mn20Ni14 | HCP (high pressure torsion) | 1.620 | [ |
2017 | Fe50Mn30Co10Cr10 | HCP + FCC | 1.616 | [ |
2018 | Ce20Gd20Tb20Dy20Ho20 | HCP + OMP | 1.588 | [ |
2018 | Er16.67Gd16.67Ho16.67La16.67Tb16.67Y16.67 | HCP | 1.578 | [ |
2019 | Ir26Mo20Rh22.5Ru20W11.5 | HCP | 1.601 | [ |
2019 | Ir25.5Mo20Rh20Ru25W9.5 | HCP | 1.598 | [ |
Table 4 Currently developed single-phase HCP alloys and alloys with HCP structure as the main phase
Published year | Composition | Structure | c/a | References |
---|---|---|---|---|
2013 | Co25Os25Re25Ru25 | HCP (predicted) | None | [ |
2014 | Y20Gd20Tb20Dy20Lu20 | HCP + OMP | 1.574 | [ |
2014 | Gd20Tb20Dy20Tm20Lu20 | HCP + OMP | 1.574 | [ |
2014 | Ho20Dy20Y20Gd20Tb20 | HCP | 1.579 | [ |
2014 | Al20Li20Mg20Sc20Ti20 | HCP (annealing) | 1.588 | [ |
2015 | Co25Fe25Re25Ru25 | HCP | 1.581 | [ |
2015 | Co25Re25Ru25V25 | HCP + OMP | 1.606 | [ |
2016 | Sc16.67Y16.67La16.67Ti16.67Zr16.67Hf16.67 | Dual HCP | 1.583/1.575 | [ |
2016 | Gd20Ho20La20Tb20Y20 | HCP | 1.589 | [ |
2017 | Al15Hf25Sc10Ti25Zr25 | HCP + OMP | 1.585 | [ |
2017 | Ir19Os22Re21Rh20Ru19 | HCP | 1.590 | [ |
2017 | Gd20Dy20Er20Ho20Tb20 | HCP | 1.578 | [ |
2017 | Co20Cr20Fe20Mn20Ni20 | HCP (high pressure) | 1.620 | [ |
2017 | Co20Cr26Fe20Mn20Ni14 | HCP (high pressure torsion) | 1.620 | [ |
2017 | Fe50Mn30Co10Cr10 | HCP + FCC | 1.616 | [ |
2018 | Ce20Gd20Tb20Dy20Ho20 | HCP + OMP | 1.588 | [ |
2018 | Er16.67Gd16.67Ho16.67La16.67Tb16.67Y16.67 | HCP | 1.578 | [ |
2019 | Ir26Mo20Rh22.5Ru20W11.5 | HCP | 1.601 | [ |
2019 | Ir25.5Mo20Rh20Ru25W9.5 | HCP | 1.598 | [ |
Fig. 9 Constituent elements used in the present HCP HEAs. The green areas exhibit the elements used in the first generation of HCP HEA, and the blue areas correspond to the second generation
[1] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)
DOI URL |
[2] |
S.F. Zhao, Y. Shao, X. Liu, N. Chen, H.Y. Ding, K.F. Yao, Mater. Des. 87, 625 (2015)
DOI URL |
[3] |
H.Y. Ding, Y. Shao, P. Gong, J.F. Li, K.F. Yao, Mater. Lett. 125, 151 (2014)
DOI URL |
[4] |
M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Acta Mater. 60, 5723 (2012)
DOI URL |
[5] |
S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544, 460 (2017)
DOI URL PMID |
[6] | I. Basu, V. Ocelik, J.T.M. De Hosson, Acta Mater. 150, 104 (2018) |
[7] |
D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang, Acta Mater. 123, 285 (2017)
DOI URL |
[8] |
J. Liu, X. Guo, Q. Lin, Z. He, X. An, L. Li, P.K. Liaw, X. Liao, L. Yu, J. Lin, L. Xie, J. Ren, Y. Zhang, Sci. China Mater. 62, 853 (2019)
DOI URL |
[9] |
Z. Zhang, M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nat. Commun. 6, 10143 (2015)
URL PMID |
[10] |
Y. Zhang, S.G. Ma, J.W. Qiao, Metall. Mater. Trans. A 43, 2625 (2011)
DOI URL |
[11] |
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18, 1758 (2010)
DOI URL |
[12] |
O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19, 698 (2011)
DOI URL |
[13] |
W. Zhang, P. Liaw, Y. Zhang, Entropy 20, 951 (2018)
DOI URL |
[14] | O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, J. Alloys Compd. 509, 6043 (2011) |
[15] | Y.L. Chen, C.W. Tsai, C.C. Juan, M.H. Chuang, J.W. Yeh, T.S. Chin, S.K. Chen, J. Alloys Compd. 506, 210 (2010) |
[16] | M. Gao, D. Alman, Entropy 15, 4504 (2013) |
[17] | A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM 66, 1984 (2014) |
[18] | M. Feuerbacher, M. Heidelmann, C. Thomas, Mater. Res. Lett. 3, 1 (2014) |
[19] | Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng Mater. 10, 534 (2008) |
[20] | Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014) |
[21] | A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005) |
[22] | X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012) |
[23] | S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011) |
[24] | Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016) |
[25] | Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Scr. Mater. 104, 53 (2015) |
[26] | Y.F. Ye, Q. Wang, Y.L. Zhao, Q.F. He, J. Lu, Y. Yang, J. Alloys Compd. 681, 167 (2016) |
[27] | Y.F. Ye, C.T. Liu, Y. Yang, Acta Mater. 94, 152 (2015) |
[28] | Y.F. Ye, X.D. Liu, S. Wang, C.T. Liu, Y. Yang, Intermetallics 78, 30 (2016) |
[29] | M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, J.A. Hawk, Metall. Mater. Trans. A 47, 3322 (2015) |
[30] | J. Lužnik, P. Koželj, S. Vrtnik, A. Jelen, Z. Jagličić, A. Meden, M. Feuerbacher, J. Dolinšek, Phys. Rev. B 92, 224201 (2015) |
[31] | Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, Y. Zhang, Mater. Des. 96, 10 (2016) |
[32] | K.V. Yusenko, S. Riva, P.A. Carvalho, M.V. Yusenko, S. Arnaboldi, A.S. Sukhikh, M. Hanfland, S.A. Gromilov, Scr. Mater. 138, 22 (2017) |
[33] | A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, Intermetallics 69, 103 (2016) |
[34] |
F. Zhang, Y. Wu, H. Lou, Z. Zeng, V.B. Prakapenka, E. Greenberg, Y. Ren, J. Yan, J.S. Okasinski, X. Liu, Y. Liu, Q. Zeng, Z. Lu, Nat. Commun. 8, 15687 (2017)
DOI URL PMID |
[35] |
C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei, M. Lang, R.C. Ewing, W.L. Mao, Nat. Commun. 8, 15634 (2017)
URL PMID |
[36] | J. Moon, Y. Qi, E. Tabachnikova, Y. Estrin, W.M. Choi, S.H. Joo, B.J. Lee, A. Podolskiy, M. Tikhonovsky, H.S. Kim, Mater. Lett. 202, 86 (2017) |
[37] | K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett. 3, 95 (2014) |
[38] | Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, Acta Mater. 131, 323 (2017) |
[39] | C.H. Tsau, Y.H. Chang, Entropy 15, 5012 (2013) |
[40] | C.H. Tsau, Mater. Sci. Eng. A 501, 81 (2009) |
[41] |
T.T. Shun, C.H. Hung, C.F. Lee, J. Alloys Compd. 495, 55 (2010)
DOI URL |
[42] | T.T. Shun, C.H. Hung, C.F. Lee, J. Alloys Compd. 493, 105 (2010) |
[43] |
J.W. Qiao, M.L. Bao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang, J.A. Hawk, M.C. Gao, J. Appl. Phys. 124, 195101 (2018)
DOI URL |
[44] |
T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130, 10 (2017)
DOI URL |
[45] | T. Zuo, M. Zhang, P.K. Liaw, Y. Zhang, Intermetallics 100, 1 (2018) |
[46] | R. Li, H. Hao, Y. Zhao, Y. Zhang, Metals 7, 76 (2017) |
[47] | Y. Li, W. Zhang, T. Qi, J. Alloys Compd. 693, 25 (2017) |
[48] | Y. Zhang, M. Zhang, D. Li, T. Zuo, K. Zhou, M. Gao, B. Sun, T. Shen, Metals 9, 382 (2019) |
[49] | Y. Yuan, Y. Wu, X. Tong, H. Zhang, H. Wang, X.J. Liu, L. Ma, H.L. Suo, Z.P. Lu, Acta Mater. 125, 481 (2017) |
[50] | S.M. Na, P.K. Lambert, H. Kim, J. Paglione, N.J. Jones, AIP Adv. 9, 035010 (2019) |
[51] | K. Sarlar, A. Tekgül, I. Kucuk, Curr. Appl. Phys. 20, 18 (2020) |
[52] | K. Wu, C. Liu, Q. Li, J. Huo, M. Li, C. Chang, Y. Sun, J. Magn. Magn. Mater. 489, 165404 (2019) |
[53] | W. Sheng, J.Q. Wang, G. Wang, J. Huo, X. Wang, R.W. Li, Intermetallics 96, 79 (2018) |
[54] | J. Huo, L. Huo, H. Men, X. Wang, A. Inoue, J. Wang, C. Chang, R.W. Li, Intermetallics 58, 31 (2015) |
[55] |
L. Xue, L. Shao, Q. Luo, B. Shen, J. Alloy. Compd. 790, 633 (2019)
DOI URL |
[56] |
A. Takeuchi, T. Wada, H. Kato, Mater. Trans. 60, 1666 (2019)
DOI URL |
[57] | A. Takeuchi, T. Wada, H. Kato, Mater. Trans. 60, 2267 (2019) |
[58] | Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, X.D. Hui, Mater. Lett. 130, 277 (2014) |
[59] | H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloy. Compd. 696, 1139 (2017) |
[60] | M. Yoo, S. Agnew, J. Morris, K. Ho, Mater. Sci. Eng. A 319, 87 (2001) |
[61] |
Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, W. Curtin, Science 359, 447 (2018)
DOI URL PMID |
[62] | X.N. Mu, H.N. Cai, H.M. Zhang, Q.B. Fan, Z.H. Zhang, Y. Wu, Y.X. Ge, D.D. Wang, Mater. Des. 140, 431 (2018) |
[63] | S. Agnew, M. Yoo, C. Tome, Acta Mater. 49, 4277 (2001) |
[64] | J.S. Park, Y.W. Chang, Adv. Mater. Res. 26, 95 (2007) |
[65] | H.R. Ogden, D.J. Maykuth, W.L. Finlay, R.I. Jaffee, JOM 3, 1150 (1951) |
[66] |
Y. Bu, Z. Li, J. Liu, H. Wang, D. Raabe, W. Yang, Phys. Rev. Lett. 122, 075502 (2019)
DOI URL PMID |
[67] |
L. Rogal, P. Bobrowski, F. Kormann, S. Divinski, F. Stein, B. Grabowski, Sci. Rep. 7, 2209 (2017)
DOI URL PMID |
[68] | S. Vrtnik, J. Lužnik, P. Koželj, A. Jelen, J. Luzar, Z. Jagličić, A. Meden, M. Feuerbacher, J. Dolinšek, J. Alloy. Compd. 742, 877 (2018) |
[69] | Y. Ikeda, B. Grabowski, F. Koermann, Mater. Charact. 147, 464 (2019) |
[70] |
F.X. Zhang, S. Zhao, K. Jin, H. Xue, G. Velisa, H. Bei, R. Huang, J.Y.P. Ko, D.C. Pagan, J.C. Neuefeind, W.J. Weber, Y. Zhang, Phys. Rev. Lett. 118, 205501 (2017)
DOI URL PMID |
[71] | F. Tian, H. Zhao, Y. Wang, N. Chen, Scr. Mater. 166, 164 (2019) |
[72] | C.W. Chu, W.L. McMillan, H.L. Luo,, Phys. Rev. B 3, 3757 (1971) |
[1] | Shikai Wu, Wei Gao, Tao Lu, Ye Pan. Co-Free High-Entropy Alloys Powders Immobilized by Electrospray and Microfluidics for Decolorization of Azo Dye [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1103-1110. |
[2] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[3] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[4] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[5] | Xu-Liang Shang, Zhi-Jun Wang, Qing-Feng Wu, Jin-Cheng Wang, Jun-Jie Li, Jia-Kang Yu. Effect of Mo Addition on Corrosion Behavior of High-Entropy Alloys CoCrFeNiMox in Aqueous Environments [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 41-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||