Acta Metallurgica Sinica (English Letters) ›› 2019, Vol. 32 ›› Issue (3): 381-390.DOI: 10.1007/s40195-018-0779-4
Special Issue: 2018-2019高温合金专辑
• Orginal Article • Previous Articles Next Articles
Liu Liu1,2, Jie Meng2(), Jin-Lai Liu2, Hai-Feng Zhang1,3, Xu-Dong Sun1, Yi-Zhou Zhou2
Received:
2018-03-27
Revised:
2018-05-28
Online:
2019-03-10
Published:
2019-02-22
Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390.
Add to citation manager EndNote|Ris|BibTeX
Elements | C | Cr | Mo | Co | W | Ta | Al | Hf | Re | Ni |
---|---|---|---|---|---|---|---|---|---|---|
Composition | 0.07 | 7 | 1.5 | 7.8 | 5 | 6.6 | 6 | 0.15 | 3.0 | Bal. |
Table 1 Nominal composition of the alloy (wt%)
Elements | C | Cr | Mo | Co | W | Ta | Al | Hf | Re | Ni |
---|---|---|---|---|---|---|---|---|---|---|
Composition | 0.07 | 7 | 1.5 | 7.8 | 5 | 6.6 | 6 | 0.15 | 3.0 | Bal. |
Fig. 1 Relationship between the fatigue life and the strain range of experimental alloy at 980 °C: a total strain range versus fatigue life of various oriented alloy, b-d total, elastic and plastic strain ranges versus the number of cycles to failure of the alloy with the [001], [011] and [111] orientations, respectively
Fig. 2 Relationship between the fatigue life and the strain range of the experimental [001], [011] and [111] alloy at 980 °C: a normalized elastic strain range versus the number of cycles, b inelastic strain range versus the number of cycles
Fig. 3 SEM images of fatigue fracture of the [001] specimens after LCF at 980 °C: a-d ?εt/2 = 0.8%, e-h ?εt/2 = 0.45%: a, e macroscopical fracture morphology, b, f high magnification of the yellow boxes in a and e indicating the crack initiation site, c, g surface oxidation cracks, d, h high magnification of the blue dashed boxes in a and e showing striations in the area of crack propagation
Fig. 5 SEM images of fatigue fracture of the [011] specimens after LCF at 980 °C: a-d ?εt/2 = 0.8%, e-h ?εt/2 = 0.25%: a, e macroscopical fracture morphology, b, f, g surface slip morphologies, c the microporosity crack, d high magnification of the blue dashed box in a showing striations and secondary cracks, h surface oxidation crack
Fig. 7 SEM images of fatigue fracture of the [111] specimens after LCF at 980 °C: a-c ?εt/2 = 1.0%, d-f ?εt/2 = 0.2%: a, d macroscopical fracture morphology, b, e crack initiation site, c surface oxidation crack, f slip bands
Fig. 9 Morphologies of secondary cracks on the longitudinal sections of the [001] specimens after LCF at 980 °C: a forked and kinked cracks, b crystallographic secondary crack, c slip bands and partial crack closure of the crack tip (high magnification of the yellow dashed box in b), d slip bands of the crack tip (high magnification of the green dashed box in b)
Fig. 10 Morphologies of secondary cracks on the longitudinal sections of the [011] specimens after LCF at 980 °C: a secondary crack deflection at interdendritic carbides and eutectics, b the secondary crack accompanied by γ and γ′ phases distortion and slip bands, c different directions of slip bands (high magnification of the yellow dashed box in b)
Fig. 11 Morphologies of secondary cracks on the longitudinal sections of the [111] specimens after LCF at 980 °C: a secondary crack generated at the junction of different slip planes, b crack propagation path altered by carbides (high magnification of the blue dashed box in a), c crack-penetrating carbides (high magnification of the purple box in a)
Orientations | σ0.2σ0.2 (MPa) | σbσb (MPa) | Elongation (%) | Reduction in area (%) | Elastic modulus (GPa) |
---|---|---|---|---|---|
[ | 792 | 850 | 23.5 | 40 | 97 |
[ | 575 | 620 | 29 | 46 | 175 |
[ | 575 | 625 | 40 | 43 | 234 |
Table 2 Tensile properties of experimental alloy with different orientations at 980 °C
Orientations | σ0.2σ0.2 (MPa) | σbσb (MPa) | Elongation (%) | Reduction in area (%) | Elastic modulus (GPa) |
---|---|---|---|---|---|
[ | 792 | 850 | 23.5 | 40 | 97 |
[ | 575 | 620 | 29 | 46 | 175 |
[ | 575 | 625 | 40 | 43 | 234 |
|
[1] | Xiaohui Shi, Zuhan Cao, Zhiyuan Fan, Junwei Qiao. Texture Evolution Behavior and Its Triggered Mechanical Anisotropy of CP Ti During Severe Cold Rolling and Subsequent Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1271-1282. |
[2] | Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 799-807. |
[3] | Xiao-An Hu, Gao-Le Zhao, Yun Jiang, Xian-Feng Ma, Fen-Cheng Liu, Jia Huang, Cheng-Li Dong. Experimental Investigation on the LCF Behavior Affected by Manufacturing Defects and Creep Damage of One Selective Laser Melting Nickel-Based Superalloy at 815 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 514-527. |
[4] | Guang-Da Sun, Li Zhou, Ren-Xiao Zhang, Ling-Yun Luo, Hao Xu, Hong-Yun Zhao, Ning Guo, Di Zhang. Effect of Sleeve Plunge Depth on Interface/Mechanical Characteristics in Refill Friction Stir Spot Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 551-560. |
[5] | Yi-Fei Li, Li Wang, Gong Zhang, Dong-ng Qi, Kui Du, Lang-Hong Lou. Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100 °C/150 MPa [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 446-458. |
[6] | Jinshan He, Zhengrong Yu, Longfei Li, Xitao Wang, Qiang Feng. Effect of grit blasting and subsequent heat treatment on stress rupture property of a Ni-based single-crystal superalloy SGX3 [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1681-1688. |
[7] | Jun-Lei Zhang, Han Liu, Yu-Lu Xie, Guang-Sheng Huang, Xiang Chen, Bin Jiang, Ai-Tao Tang, Fu-Sheng Pan. Microstructure Distribution and Tensile Anisotropy of Dissimilar Friction Stir Welded AM60 and AZ31 Magnesium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1487-1504. |
[8] | Bin Yin, Guang Xie, Xiangwei Jiang, Shaohua Zhang, Wei Zheng, Langhong Lou. Microstructural Instability of an Experimental Nickel-Based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1433-1441. |
[9] | Jian Zhang, Yuan-Yuan Guo, Mai Zhang, Zhen-Yu Yang, Yu-Shi Luo. Low-Cycle Fatigue and Creep-Fatigue Behaviors of a Second-Generation Nickel-Based Single-Crystal Superalloy at 760 °C [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1423-1432. |
[10] | Yu Zhang, Qing Wang, Hong-Gang Dong, Chuang Dong, Hong-Yu Zhang, Xiao-Feng Sun. High-Temperature Structural Stabilities of Ni-Based Single-Crystal Superalloys Ni-Co-Cr-Mo-W-Al-Ti-Ta with Varying Co Contents [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 127-133. |
[11] | Qiang Wang, Song Zhang, Chun-Hua Zhang, Chen-Liang Wu, Ling Ren, Jian-Qiang Wang, Jiang Chen. Functionally Graded Stainless Steel Fabricated by Direct Laser Deposition: Anisotropy of Mechanical Properties and Hardness [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(1): 19-26. |
[12] | Jie Yang. Micromechanical Analysis of In-Plane Constraint Effect on Local Fracture Behavior of Cracks in the Weakest Locations of Dissimilar Metal Welded Joint [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 840-850. |
[13] | Z. D. Fan, D. Wang, C. Liu, G. Zhang, J. Shen, L. H. Lou, J. Zhang. Low-Cycle Fatigue Properties of Nickel-Based Superalloys Processed by High-Gradient Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 878-886. |
[14] | Li-Qing Wang, Yu-Ping Ren, Shi-Neng Sun, Hong Zhao, Song Li, Gao-Wu Qin. Microstructure, Mechanical Properties and Fracture Behavior of As-Extruded Zn-Mg Binary Alloys [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(10): 931-940. |
[15] | Yun-Li Li, Wen-Ping Wu, Zhi-Gang Ruan. Molecular Dynamics Simulation of the Evolution of Interfacial Dislocation Network and Stress Distribution of a Ni-Based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 689-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||